mmm—ll—lm Bm v—ncnmmm —<— m : m —.—Q \-V Phil Weber, Behzad Bordbar and Peter Tino = g 14.@

Introduction — Process Mining Framework: Theoretical Analysis
Process mining [1]: the extraction of (business) process Assess algorithms’ ability to learn these distributions: We analysed the Alpha algorithm [2]. Figs. 2 and 3 show the
models from information systems’ log files, @ Develop probability formulae for discovery of process structures. behaviour when mining an XOR split with, and without noise.
@ what activities? in what order? @ Extend to discovery of transition probabilities, where used. |
@ which people or resources interact? @ Aggregate to overall discovery probability of arbitrary process models.
@ are audit requirements satisfied? © Bound to the required level of accuracy and confidence.

@ where are the bottlenecks” what happens if ... * — investigate algorithms’ behaviour (rate of convergence, issues causing lack of

drawing from machine learning and data mining; convergence, relation to other algorithms).
iInforming business analysis, BPM, service-oriented
architectures, etc.
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Overview

Which Mining Algorithm is ‘Best’?

Figure 2: No. Traces for 95% Proba- Figure 3: Probability of Mining XOR
@ %V/ S o bility of mining XOR Split. Split with Noise, in 20 traces.

Enterprise

Many mining algorithms and modelling languages, but

@ Which is ‘best’ in a particular situation?
@ On what does this depend?

@ How correct is the mined model?

@ How much data is needed?

__ -7 \_ ProM (http://www.processmining.org) was used to

@) <7 mine a simple test model from simulated logs.

process structures

1 mined model M1 Initial results (Fig. 4) show that the amount of data needed
for mining can indeed be successfully predicted.
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Objective choice of algorithm + just enough data
—— process mining in near real time
— Improved process monitoring & response to change.
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Abstract from the representation: treat business processes - |

as probability distributions over strings: g g |
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@ Activity = symbol; process trace = string. 5 |
@ Underlying process model M generates traces according to O rocess trace > 0 0. process fraces o —— . y

(unknown) distribution Py, Fig. 1 (1) and (6).

Figure 1: Approach to mining convergence Figure 4: Convergence of Mined Model with Ground Truth

© Mined model M1 is a (different?) distribution Qu1 (2), (6).
© Compare Quq and Py, to assess convergence (7), (8).

© Use stochastic automata as a minimal representation of Framework: Experimental Evaluation
both process models and distributions (5).

Future Work and Real-Time Process Mining

Test with process structures and full models: to validate the theory and gather data We aim to compare the behaviour of different types of
References to inform choice of algorithm, amount of data, and confidence in results: algorithms and process structures, to develop general
@ Design test models (varying structures and probabilities). results for the capabilities of process mining algorithms.
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