UNIVERSITYOF BIRMINGHAM

A Framework for the Analysis of **Process Mining Algorithms** Phil Weber, Behzad Bordbar, Peter Tino School of Computer Science

What is Process Mining?

Learning models of business processes, from the log files produced by their information systems:

Business Processes

Events, activities and how related: To achieve a business need or goal.

Used to control or dictate business operations: invoicing, purchasing, web services, ...

Enforce business rules, audit requirements, ... Improve efficiency, B2B, web services, ...

Process discovery algorithms attempt to recover model of the true underlying process.

People and systems interact according to some underlying process.

This may not be the same as the **intention**.

IT systems always write log files.

We can use this data to generate useful information.

Process conformance compares reality (mined model) with intention.

Process extension adds information on decision rules, performance, planning through **simulation**, "what-if?" modelling.

Many algorithms! Many representations!

- Which is best for my situation?
- How to compare? ?

A Probabilistic Framework

Abstract from the representation

- business processes: probability distributions over strings of symbols.
- underlying process M generates traces according to distribution P(M), 2.
- algorithm learns model M' representing (different) distribution Q(M'), 3
- distance e.g. d[P(M),Q(M')] between distributions measures convergence, 4.
- stochastic automata represent both process models and distributions. 5.

chase process discovery analysis & action bill → pick 10% CD. PQ receive despatch close order 15% chase (Reality!) pick -> bill 90% What are their learning properties? How much data do I need? ? Q(M')Compare models as distributions Struct. Approp. a' **For Example**

The Alpha algorithm uses

Analysis

- identify basic structures in model (above),
- model algorithms' behaviour in terms of
 - requirements for mining basic structures (above)
 - probability of achieving requirements in terms of
 - probabilities of substrings and amount of data.

So What?

Rigorous foundation for generalising/abstracting models, modelling noise, comparing processes, ...

Practical applications include detecting change, online or real-time process mining. anomaly or error detection.

relations between task pairs (string 'ab') to build a Petri net.

We determine probability of mining structures and model

from the probability of 'seeing' these strings in the log.

The **Heuristics Miner** uses a metric, the ratio of how often a pair of tasks occurs in either order, to construct a directed graph.

A simple metric, following a complex distribution. By modelling it we can give bounds for how many traces are needed for the 'correct' metrics to be maximised, so mining the correct model.

Next question: how to compare these algorithms?

www.bham.ac.uk

References

P. Weber, B. Bordbar and P. Tiňo: A Framework for the Analysis of Process Mining Algorithms. Accepted: IEEE Trans. Systems, Man and Cybernetics, 2012.