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What This Work is About

Phoneme recognition with a segmental model of
speech, a continuous-state algorithm, very few
parameters, using a low-dimensional representation of
speech derived from a bottleneck neural network.

Low-Dimensional Models of Speech

Speech suggested to lie on low-dimensional manifold(s) (e.g. [1]).

Since speech is generated by the relatively slow, constrained and smooth movement of a small
number of articulators in the human vocal tract.

Therefore features are strongly correlated in time and typically exhibit smooth, slowly-varying
dynamics.

e.g. Voiced sounds described by smoothly-varying resonances [2],

Piecewise linear continuous model with dwell-transition dynamics,
inspired by Holmes, Mattingly and Shearme.

or Consonants by stationary features and abrupt changes [3].

Piecewise constant disconnected model with dwell-only dynamics:
2 consonant sequences highlighting discriminatory energy bands.

This poster concentrates on application of the dwell-transition
model to low-dimensional bottleneck features.

CS-HMM Model and Recovery [2]

Assuming continuous features with smoothly-varying dynamics,
generated according to the ‘dwell-transition’ model:

1 fit a continuous sequence of trajectories to them, to recover the sequence of phonemes.
2 Estimate an inventory of phoneme targets θϕ and realisation (instance) variances Aϕ.
3 Initialise hypotheses for each starting phoneme, with continuous and discrete components.
4 Continuous components: x t : current estimate of current realisation based on phonetic

history and observations y1 . . . y t , stored as a scaled Gaussian KtN (x − µt , Pt).
5 Discrete components d : phonetic history and time in current dwell or transition.
6 Update the continuous components x based on observation y t.
7 Realisation Aφ and observation variance E are accounted for separately.
8 Branch and prune hypotheses to explore all explanations of the data.
9 Score hypotheses based on Kt .

This scheme requires only a small number of parameters.

‘Natural’ and Bottleneck Features

‘Natural’ Features: Formants estimated using WaveSurfer, Vocal
Tract Resonances (VTRs), and Spectral Features measuring
mean energy in perceptually-motivated frequency bands.

Bottleneck Features: activations of a 3-9 neuron hidden layer, in a
5-layer MLP classifier trained by Stochastic Gradient Descent to
predict phoneme posteriors from 11-frame filterbank inputs [4].
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Recognition Results: Bottleneck vs ‘Natural Features’
Features Dimension Phone Set Train Test %Corr %Err Parameters
MFCC+δ+δδ 39 all Train Core Test 76.2 29.1 1.4 ×107

9D Bottleneck 9 all Train Core Test 74.4 29.4 2.3 × 105

3D Bottleneck 3 all Train Core Test 65.0 39.1 7.6 × 104

3 Formant 3 all Train Core Test 49.3 59.3 7.6 × 104

3 Formant+δ+δδ 9 all Train Core Test 56.3 48.9 2.3 × 105

Discrete-state monophone multiple mixture GMM-HMMs

9D bottleneck features (BNFs) give similar accuracy to MFCCs (13
plus deltas and delta-deltas). 3D BNFs considerably out-perform
equivalent-dimension estimated formants.

Features Dimension Phone Set %Corr %Sub %Del %Ins %Err (S/E) Parameters
3 Formant 3 all 31.1 35.6 33.4 4.8 73.7 163
3 Formant 3 voiced 20.4 31.2 48.4 1.6 81.2 112
3 VTR 3 all 29.2 36.2 34.6 3.7 74.6 163
3 VTR 3 voiced 29.2 37.0 33.8 3.3 74.2 112
3 VTR 3 unvoiced 32.2 33.4 34.4 2.5 70.3 67
9 Spectral 3 unvoiced 68.0 22.4 9.6 6.2 38.1 283

3D Bottleneck 3 all 55.7 30.1 14.2 3.6 47.9 (0.07) 163
3D Bottleneck 3 voiced 52.5 29.3 18.2 3.4 50.9 (0.09) 112
3D Bottleneck 3 unvoiced 71.9 17.4 10.7 2.3 30.4 (0.01) 67

9D Bottleneck 9 all 66.9 22.9 10.2 5.0 38.1 (0.11) 535
9D Bottleneck 9 voiced 60.9 24.6 14.5 3.9 43.0 (0.01) 382
9D Bottleneck 9 unvoiced 82.8 10.9 6.3 4.2 21.3 (0.25) 247

Continuous-State Hidden Markov Model

9D BNFs approach DS-HMM accuracy but with several orders of
magnitude fewer parameters. Low variation between repeated
random initialisations. Formants and VTRs perform very poorly.

Note: For all results, models were trained for the TIMIT 49 phoneme set and scored using the TIMIT 40 phoneme
set. A bigram language model was used.

Some Points of Note
These are the first CS-HMM full phoneme recognition results with reasonable error rates.
Room for improvement in training algorithm and well-informed addition of parameters.
Lower error with unvoiced may give insight into the way the network is trained?

Lack of interpretability of features, and many parameters used to generate the features,
although these are not used in training or testing the recogniser.

The dynamics of the bottleneck features are interesting. They
seem appropriate for the CS-HMM for all types of sound.

Analysis of the Dynamics of the Features

Example CS-HMM recoveries (thick blue lines), showing realised dwells (red), inventory feature means (green).
From top: 3D BNs (magenta) ∈ [0, 1], offset to visualise), VTRs, formants.

Formants and VTR: CS-HMM recovery (blue, red) fits data
(magenta) closely. Inventory frequencies (green) lack
discrimination, and are far from the realisations (red)
⇒ Too much variability for the model/algorithm as configured.

Formants: Ill-defined for unvoiced ⇒ tries to fit many short dwells.
Bottlenecks: Inventory is more discriminatory, recovery fits the

data well, features are less dependent on part of speech ⇒

some variability unnecessary for this task has been removed.

Summary and Questions Arising

Phoneme recognition using a model faithful to human speech
production. Low dimensional ‘bottleneck’ features apparently
somehow capture the true dynamics of speech. But . . .

How should we interpret these features?
How do they capture the dynamics of human speech?
How and what is the network learning?
What can we learn about human speech, its perception or
production, neural networks, or to apply to improving ASR?
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