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What This Work is About

Analysis of very low-dimensional bottleneck features.

spatial representation of vowels is very close to F1:F2;

consonants are analysed in the same framework;

neural networks seem to derive representations

specific to particular phonetic categories —

properties similar to those used by human perception.

Bottleneck Features (BNFs) and Models of Speech

Speech suggested to lie on low-dimensional manifolds (e.g. [1]).

for Vowels: 81.6% acoustic variation is explained by 3

dimensions (94.0% with 5) (Pols et al. [2]) — cf formants F1 − F3;

for Fricatives: 95% by 2 dimensions (Choo et al. [3]).

Segmental and Continuous-State HMM models for ASR

aim to be faithful to the nature and dynamics of speech,

but had difficulty adequately modelling (e.g.) the all variability in

natural low-dimensional representations such as formants.

9d Bottleneck features found to perform well in CS-HMMs [4]:

Network Autoencoder MLP DBN

Dim./Layer 3d/3 9d/3 3d/3 9d/3 3d/4 9d/4

all phones 64.8 60.8 47.8 37.9 43.8 35.2

voiced only 72.7 65.6 50.5 43.8 47.7 40.3

unvoiced 40.5 37.7 30.2 20.6 26.6 19.9

CS-HMM phone recognition % Error using bottleneck features (BNFs).

But what do the BNF features represent?

Can they be related to human perception or production?

Bottleneck Networks

Bottleneck Features (BNFs) from 3 types of networks (from TIMIT).

1 Autoencoders: reconstruct input.
2 MLP Classifiers (SGD-trained): predict posteriors for 49 phones.
3 DBN Classifiers (CD pre-trained with SGD fine-tuning).

5 layers (2d–9d bottleneck in layer 3 [e.g. ‘3d/3’] or 4 [‘3d/4’]).

Input: 11 frames of 26-dimensional log Mel filterbanks.

Training: SGD and/or CD using Theano, cross-entropy error.

Vowels: Formants vs Autoencoder 3-dimensional BNFs

1 Pairwise plots of 3d BNFs in comparison with formants.
2 Visualisation and comparison using metrics to compare ‘shape’.

3d BNFs from Autoencoder

preserve formant vowel

space structure,

exhibit large variance

poorly separated phone

clusters,

compression into part of

space mimics limits of

human articulation.

F1:F2 Vowel Space (TIMIT features) BNF pair from Autoencoder

Visualisation: Features are represented spatially using 2d plots showing centroids and 0.5 s.d.

of clusters of phone realisations (average feature between TIMIT boundaries) for a set of phones.

Metrics: Let X ,Y be n × 2 matrices of points x i = (xi1, xi2), y i = (yi1, yi2) in two such plots.

The shape Dx described by connecting points x i is significant, but not its location or rotation.

d2(X ,Y ) is the Euclidean distance between points y i and the best-fit ŷ i found by affine

transforming X towards Y ,

d2(X ,Y ) = 1
n

∑n
i=1

√

∑2
j=1(yij − ŷij)

2
, for Ŷ = AX , where A = YX−1

.

Vowels: Formants vs Classifier 3-dimensional BNFs

3d BNF from MLP: pair (0, 1) pair (0, 2) pair (1, 2)

Best Match Avg. Worst

Feature Pair Formant d2 d2

MLP 3d/3 a (1, 3) F1:F2 0.142 0.278

MLP 3d/3 b (1, 2) F1:F3 0.195 0.336

MLP 3d/3 c (1, 2) F1:F2 0.216 0.330

MLP 3d/3 d (1, 2) F1:F2 0.119 0.339

DBN 3d/4 (2, 3) F1:F2 0.176 0.363

A/E 3d/3 (2, 3) F1:F2 0.192 0.388

MFCC Inconclusive (mean d2 = 0.348, ds = 0.217)

Distances between BNF and formant spaces.

Summary:

One BNF pair always matches the vowel space.

Reduced variance and increased cluster separation.

3rd dim. appears to relate to consonants or voicing.

Metrics highlight a single anomaly – network reaches a

different local optimum (F1:F3)?

Alignment of formant and BNF

representations:

Preserves structure;

not identical.

⇒ local optima and/or

3 dimensions is too few.

Robust and repeatable analysis without formant analysis.

Spatial Representations of Fricatives

3d BNF Fricatives From Choo et al. [3]

Analysis of fricatives in the

same framework.

Again close

correspondence with

phonetic, perceptual,

and acoustic studies.

Greater distortion.

3 dimensions too few?

What are the axes?

Unified Space for All Phones

2d BNF 3d BNF pair (0, 1) 3d BNF pair (0, 2)

2D BNF

Space shows distinct regions used for each phonetic category.

Divides voiced and unvoiced – voiced consonants on the border.

Distorted vowel space structure – lost information.

3D BNF

Co-location of phonetic categories in some dimensions.

Some clustering according to place and manner of articulation.

Discussion, Conclusions and Questions

Robust and unified analysis framework for all phones.

Unified space may be of benefit to speech scientists and therapists.

Is it interpretable globally e.g. according to tongue position or

acoustics (cf groups {/s/, /iy/, /z/}, {/zh/, /sh/}, {/w/, /l/, /ao/})?

Can we gain insights into theories of perception?

How would BNFs from RNNs better capture dynamics and other

features of known perceptual importance?
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