Interpretation of Low Dimensional Neural Network Bottleneck Features in Terms of Human Perception and Production

What This Work is About

Analysis of very low-dimensional bottleneck features.

- spatial representation of vowels is very close to $F_1:F_2$;
- consonants are analysed in the same framework;
- neural networks seem to derive representations specific to particular phonetic categories —
- o properties similar to those used by human perception.

Bottleneck Features (BNFs) and Models of Speech

Speech suggested to lie on low-dimensional manifolds (e.g. [1]). for Vowels: 81.6% acoustic variation is explained by 3

dimensions (94.0% with 5) (*Pols et al.* [2]) — *cf* formants $F_1 - F_3$; • for Fricatives: 95% by 2 dimensions (*Choo et al.* [3]).

Segmental and Continuous-State HMM models for ASR

- aim to be faithful to the nature and dynamics of speech,
- but had difficulty adequately modelling (e.g.) the all variability in natural low-dimensional representations such as formants.
- 9d Bottleneck features found to perform well in CS-HMMs [4]:

Network	Autoencoder		MLP		
Dim./Layer	3d/3	9d/3	3d/3	9d/3	3d/4
all phones	64.8	60.8	47.8	37.9	43.8
voiced only	72.7	65.6	50.5	43.8	47.7
unvoiced	40.5	37.7	30.2	20.6	26.6

CS-HMM phone recognition % Error using bottleneck features (BNFs).

But what do the BNF features represent? Can they be related to human perception or production?

Bottleneck Networks

Bottleneck Features (BNFs) from 3 types of networks (from TIMIT).

Autoencoders: reconstruct input.

MLP Classifiers (SGD-trained): predict posteriors for 49 phones.

OBN Classifiers (CD pre-trained with SGD fine-tuning).

5 layers (2d–9d bottleneck in layer 3 [e.g. '3d/3'] or 4 ['3d/4']).

- Input: 11 frames of 26-dimensional log Mel filterbanks.
- Training: SGD and/or CD using Theano, cross-entropy error.

University of Birmingham, UK

Philip Weber, Linxue Bai, Martin Russell, Peter Jančovič, Steve Houghton

School of Engineering, Department of EESE, University of Birmingham, UK

F1 (H

*F*₁:*F*₂ *Vowel Space*

3d BNFs from Autoencoder preserve formant vowel

- space structure,
- exhibit large variance poorly separated phone clusters,
- compression into part of space mimics limits of human articulation.

(TIMIT features)

Visualisation: Features are represented spatially using 2d plots showing centroids and 0.5 s.d. of clusters of phone realisations (average feature between TIMIT boundaries) for a set of phones. *Metrics:* Let X, Y be $n \times 2$ matrices of points $\mathbf{x}_i = (x_{i1}, x_{i2}), \mathbf{y}_i = (y_{i1}, y_{i2})$ in two such plots. The shape \mathcal{D}_x described by connecting points \mathbf{x}_i is significant, but not its location or rotation. $d_2(X, Y)$ is the Euclidean distance between points y_i and the best-fit \hat{y}_i found by affine transforming X towards Y,

 $d_2(X, Y) = \frac{1}{n} \sum_{i=1}^n \sqrt{\sum_{j=1}^2 (y_{ij} - \hat{y}_{ij})^2}$, for $\hat{Y} = AX$, where $A = YX^{-1}$.

	Best Match			Avg. Worst
Feature	Pair	Formant	d ₂	d ₂
MLP 3d/3 a	(1,3)	$F_1:F_2$	0.142	0.278
MLP 3d/3 b	(1,2)	F ₁ : F ₃	0.195	0.336
MLP 3d/3 c	(1,2)	$F_1:F_2$	0.216	0.330
MLP 3d/3 d	(1,2)	$F_1:F_2$	0.119	0.339
DBN 3d/4	(2,3)	$F_1:F_2$	0.176	0.363
A/E 3d/3	(2,3)	$F_1:F_2$	0.192	0.388
MFCC	Inconcl	<i>usive</i> (mean d	$d_2 = 0.348$, <i>d_s</i> = 0.217)

Summary:

- One BNF pair always matches s the vowel space.
- Reduced variance and increased cluster separation.
- 3rd dim. appears to relate to consonants or voicing.
- Metrics highlight a single anomaly network reaches a different local optimum $(F_1:F_3)$?

Robust and repeatable analysis without formant analysis.

- http://www.birmingham.ac.uk/SRbS/ -

Vowels: Formants vs Autoencoder 3-dimensional BNFs

Pairwise plots of 3d BNFs in comparison with formants. Visualisation and comparison using metrics to compare 'shape'.

BNF pair from Autoencoder

2D BNF

3D BNF

Discussion, Conclusions and Questions

- Can we gain insights into theories of perception?
- features of known perceptual importance?

Selected References

- JASA, 46:456-467, 1969.
- *in Progress*, vol. 10, 1997.
- Continuous-State HMM". ICASSP 2016, Shanghai, pp. 5850-5854.

UNIVERSITY OF BIRMINGHAM

Spatial Representations of Fricatives

 Space shows distinct regions used for each phonetic category. Divides voiced and unvoiced – voiced consonants on the border. • Distorted vowel space structure – lost information.

• Co-location of phonetic categories in some dimensions. • Some clustering according to place and manner of articulation.

Robust and unified analysis framework for all phones.

Unified space may be of benefit to speech scientists and therapists. • Is it interpretable globally e.g. according to tongue position or acoustics (*cf* groups {/s/, /iy/, /z/}, {/zh/, /sh/}, {/w/, /l/, /ao/})?

• How would BNFs from RNNs better capture dynamics and other

[1] G. Fant. "Acoustic Theory of Speech Production," R. Jakobson and S. H. van Schooneveld, Eds., Mouton, 1970. [2] L. C. W. Pols, L. J. T. van der Kamp, and R. Plomp. "Perceptual and physical space of vowel sounds".

[3] W. Choo and M. Huckvale, "Spatial Relationships in Fricative Perception", Speech, Hearing and Language: Work

[4] P. Weber, L. Bai, S. M. Houghton, P. Jančovič, and M. J. Russell. "Progress on Phoneme Recognition with a

Interspeech, 12 September 2016