Exploring How Phone Classification Neural Networks Learn Phonetic Information by Visualising and Interpreting Bottleneck Features

Linxue Bai, Philip Weber, Peter Jančovič, Martin Russell

School of Engineering, University of Birmingham

Motivation

- Deep Neural Networks (DNNs) are criticized for being "black boxes"
- Very low-dimensional bottleneck features (BNFs) extracted from phone discrimination bottleneck DNNs contain sufficient information to support high-accuracy phone recognition - 9D BNFs better than 39D MFCCs [1,2]
- Can visualization of BNFs explain DNN strategies (see Weber, Bai 2016)?
- Paper explores representation of speech sounds in: very low dimensional "bottleneck" layers & non-bottleneck hidden layers

Experiments

Fig 4. 2D BNF space. The left figure plots 2D BNFs (2 neurons in bottleneck layer, sigmoid activations). The right figure plots representative BNFs for each phone: Solid dots-"cardinal"BNF vectors; Open circles: centroids of the 2D BNFs (i.e. feature means)

Experiments

Very low dimensional BNFs

Output: phone posterior probabilities

- Conventional DNN - Input: 26 logFBEs + context (± 5)
 - Output: phone posterior
- probabilities
- □ 286-512-2/9-512-49
 - 512 hidden units (1st and 3rd hidden layers)
- 2 or 9 BN units □ TIMIT speech corpus
- Input: logFBEs with context
- Fig 1. DNN structure used to extract BNFs.

Visualisation of 9D BNFs: LDA and t-SNE

- "Cardinal" features (dots) pushed to edges of their local regions
- Shaded area (long and short vowels): positions of centroids and cardinal features resembles phoneticians F1:F2 vowel space. e.g. Low to high: /ay/- /ey/- /iy/, /ao/- /uh/- /uw/, Front to back: /ey/- /ah/- /ow/
- Local coordinate systems: Vertical axis = voicing Horizontal axis = place of articulation (plosives in particular)

Interpretation

- 2D BNF space shows distinct regions for each phonetic category.
- Organisation of phones in a category appears to correspond to phone production mechanisms.
- Interpretation of axes for one phone category cannot be simply applied to others. BNF space seems to be a union of phonetic category related subspaces that preserve local structures within each subspace.
- Recalls locally-Euclidean topological structure, e.g. topological manifold.

Visualisation of non-bottleneck layers with LDA

Fig 2. LDA-based projections of BNFs (1st vs 2nd dimension), coloured by broad phone categories (linear discrimination analysis (LDA) applied to 9D BNFs; *Monophone labels used* as targets in training)

Fig 3. 2D t-SNE plots, colour-coded by broad phone categories (2D t-distributed stochastic neighbout embedding (t-SNE) visualisation of 9D BNFs; unsupervised - monophone labels NOT *given* during training)

Fig 2:

- Vowels, consonants and silences fairly well separated
- Overlaps among: sub-categories of vowels; plosives & fricatives
- Horizontal axis corresponds to voicing?

Fig 3:

- Similar to LDA visualisation wrt space separation of broad classes
- "Leafs" within a broad class usually correspond to different monophones
- Sizes of clusters and distances between them NOT directly related to the size or importance of clusters in original space

Visualisation of 2D BNFs & Optimized neural activations

□ For a given phone and hidden layer, a "cardinal" vector is a pattern of activations in the hidden layer that maximizes the posterior probability of the phone in the output layer

Fig 5. LDA-based projections of activations in other hidden layers (1st vs 2nd dimension) 1st (left) and 3rd (right) in the 286-512-9-512-49 DNN

- "Triangular" shape with similar structures vowels, strong fricatives and silences each occupy a corner of the triangle.
- Horizontal axis: transitioning from unvoiced to voiced, or increasing energy in low frequency bands (left-to-right)
- Vertical: increasing energy in high frequency bands (top-to-bottom).
- Triangular plot of the 3rd hidden layer is similar but sharper
- "Triangular visualisation" always observed when analysing "bigger" hidden layers (> about 30 nodes) within DNNs of a similar structure.

Conclusions

Visualisations of BNFs suggest phone classification strategy in DNNs can be interpreted in terms of phonetic categories (see discussion in each subsections).

- Obtained by back-propagating layer activations
- □ Pre-training: Back-propagate to input layer. Use resulting BN layer activations as start-point to apply back-prop to the BN layer

References

[1] L. Bai, P. Jančovič, M. Russell, and P. Weber, "Analysis of a low dimensional bottleneck neural network representation" of speech for modelling speech dynamics", Proc. Interspeech 2015, pp. 583–587.

- [2] P. Weber, L. Bai, S. Houghton, P. Jančovič, and M. Russell, "Progress on phoneme recognition with a Continuous-State HMM", Proc. ICASSP 2016, pp. 5850-5854.
- [3] P. Weber, L. Bai, M. Russell, P. Jančovič, and S. Houghton, "Interpretation of low dimensional neural network bottleneck features in terms of human perception and production", Proc. Interspeech 2016, pp. 3384–3388.
- [4] G. E. Hinton, "Training products of experts by minimizing contrastive divergence", Training, vol. 14, no.8, 2016 [5] A. Mohamed, G. E. Hinton, and G. Penn, "Understanding how deep belief networks perform acoustic modelling", Proc. *ICASSP 2012*, pp. 4273–4276.
- In non-bottleneck layers, as data moves through the network, from input to output, phonetic categories become more specific. Consistent with previous interpretations of DNNs [4,5].
- Triangular pattern in 1st two LDA dimensions suggests that silence, friction and voicing are three main properties learned by the DNNs.
- Relationship between internal representations learned by DNNs for speech recognition and phonetic descriptions of speech has potential impact. E.g.

UK Speech, June 2019

- Use of phonetic knowledge to improve DNN performance (like in [6]),
- Use visualisation of DNN structure to gain phonetic insights.
- May also be useful for pronunciation training.

School of Engineering, University of Birmingham, UK

Linxue Bai, lxb190@bham.ac.uk