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Typical process, in probabilistic terms

FO rensic voice com pa rison Presented with case recording(s) s and tasked with producing a likelihood ratio LR (s) to inform court about the weight of evidence provided by s.
Consider s to be sampled from D, the (hypothetical) set of all audio recordings from the relevant population p and in the recording conditions ¢ of
Using audio data (voice) to train machine learning and statistical the case, according to unknown distribution Pr (D).

models to provide courts with probabilistic answers about evidence. . . L .
P P Analyst and/or system estimates p’ = p and ¢’ = ¢, effectively estimating Pr(D) ~ Pr(D). Analyst collects or simulates data D, ~ Pr(D).

Objective, validated systems are more
trustworthy in court and perform better
than subjective human-expert reasoning.

System is trained & validated using D, to produce likelihood ratios LR(-) based on assumptions governing Pr(D) : not Pr(D).

Final evaluation LR(s) is based on s under Pr(D) : not Pr(D).
Sampling effects affect the goodness of fit of Pr(D) as a proxy for Pr(D) and “appropriateness” of LR(s) (e.g. accuracy and precision).
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Notes: 1. This ignores questions of data use for training different parts of the pipeline, calibration and validation, and non-case-specific data used

Key Issue: specific, relevant data is required for training, adaptation, to train (e.g.) an x-vector extractor. 2. This is not the same question discussed elsewhere about whether LRs should be reported with confidence
calibration and validation for each case: cost =» barrier to justice. intervals. Rather about the machine learning approach, how/what to report, and how to predict, measure and justify the accuracy of the result.
e costly and time-consuming to collect.
’ EOW mluch data do V\Ic/)e neec:]? o S Extending the benchmark [2] and case validations [1] we investigate the effect of resampling ~ Key result: System is at a point in “sampling space”.
* how “close” must it be to the case? how do we measure “close” : : L

1. speakers chosen for training/adaptation and calibration/validation. Benc:hmarkforens:c_eva!_Ol config 9 optimistic C.
Related Issue: 2. simulation of audio conditions for the questioned- and known-speaker recordings. Varying samples > considerably varying C;.

Additional training data = reducing mean C;,, but
reduced validation set =2 increased variance.

e validations reported at a sample point (e.g. [1, 2]).

. . 3. sub-selection of audio sections of given duration.
 what are the implications of this? ... (see also, e.g. [4]). 5

Similarly for the case data.
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02 variability N Can we devise metrics for the relevance of audio
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1 Predict performance by data volume/quality?
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