
Related Issue:
• validations reported at a sample point (e.g. [1, 2]).
• what are the implications of this? … (see also, e.g. [4]).
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Using audio data (voice) to train machine learning and statistical 
models to provide courts with probabilistic answers about evidence.

Objective, validated systems are more 
trustworthy in court and perform better 
than subjective human-expert reasoning.

Extending the benchmark [2] and case validations [1] we investigate the effect of resampling

1. speakers chosen for training/adaptation and calibration/validation.

2. simulation of audio conditions for the questioned- and known-speaker recordings.

3. sub-selection of audio sections of given duration.

Data: forensic_eval_01: landline/interview 166 male Australian English 
(AusEng) speakers, 646 recordings. Simulated noisy landline phone 
call and reverberant interview. Benchmark train/validation split.

Case based on AusEng500+: 169 male & 223 female AusEng speakers. 
Simulated call-centre recordings, codecs & durations.

System: E3FS3: is a ResNet – PLDA – Logistic Regression Calibration pipeline; 
outputs a likelihood ratio. Based on state-of-the-art automatic 
speaker recognition algorithms.

Metric: Cllr penalises errors and lack of confidence distinguishing same-
speaker or different-speaker pairs. 

Cllr = 0: perfect; 1: uninformative; > 1: mis-calibrated.
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Typical process, in probabilistic terms

Presented with case recording(s) 𝒔 and tasked with producing a likelihood ratio 𝐿𝑅(𝒔) to inform court about the weight of evidence provided by 𝒔.

Consider 𝒔 to be sampled from 𝓓, the (hypothetical) set of all audio recordings from the relevant population 𝒑 and in the recording conditions 𝒄 of 
the case, according to unknown distribution 𝑷𝒓(𝓓).

Analyst and/or system estimates 𝒑′ ≈ 𝒑 and 𝒄′ ≈ 𝒄, effectively estimating 𝑃𝑟(D) ≈ 𝑃𝑟(𝓓). Analyst collects or simulates data D𝑠𝑦𝑠 ∼ Pr D .

System is trained & validated using D𝑠𝑦𝑠 to produce likelihood ratios 𝐿𝑅(⋅) based on assumptions governing Pr D : not Pr(𝓓).

Final evaluation 𝐿𝑅(𝒔) is based on 𝒔 under Pr(D) : not Pr(𝓓).

Sampling effects affect the goodness of fit of Pr(D) as a proxy for Pr(𝓓) and “appropriateness” of 𝐿𝑅(𝒔) (e.g. accuracy and precision).

Notes: 1. This ignores questions of data use for training different parts of the pipeline, calibration and validation, and non-case-specific data used 
to train (e.g.) an x-vector extractor. 2. This is not the same question discussed elsewhere about whether LRs should be reported with confidence 
intervals. Rather about the machine learning approach, how/what to report, and how to predict, measure and justify the accuracy of the result.
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Case (based on AusEng500+)

Key Issue: specific, relevant data is required for training, adaptation, 
calibration and validation for each case: cost ➔ barrier to justice.
• costly and time-consuming to collect.
• how much data do we need?
• how “close” must it be to the case? how do we measure “close”?

Key result: System is at a point in “sampling space”.

Benchmark forensic_eval_01 config → optimistic Cllr.
Varying samples → considerably varying Cllr.
Additional training data → reducing mean Cllr, but 
reduced validation set → increased variance.

Similarly for the case data.

Not a problem for benchmarking, but
what impact does it have on reporting findings?

Implication that even more data is needed.

Questions: 

What should we report to court? Is a single point-
validation adequate? Should we conduct a more 
thorough validation and provide more information?

Can we devise metrics for the relevance of audio 
data? Pre-emptively validate & re-use systems? 
Predict performance by data volume/quality?
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