
Process Mining in Non-Stationary Environments

Phil Weber∗, Peter Tiňo and Behzad Bordbar

School of Computer Science - University of Birmingham - UK
Email: {p.weber,p.tino,b.bordbar}@cs.bham.ac.uk

Abstract. Process Mining uses event logs to discover and analyse busi-
ness processes, typically assumed to be static. However as businesses adapt
to change, processes can be expected to change. Since one application of
process mining is ensuring conformance to prescribed processes or rules,
timely detection of change is important. We consider process mining in
such non-stationary environments and show that using a probabilistic view
of processes, timely and confident detection of change is possible.

1 Introduction

Business processes describe related activities which are carried out to fulfil a
business function. Fig.1 shows an example process, depicted as a Petri net
and probabilistic automaton. As the process is executed, information will be
recorded in log files. Abstracting from detail, the ‘trace’ of a single enactment
of this process might be recorded as a string of symbols (activities). Process
mining [1] algorithms use logs of traces to discover and analyse process models.

A business process is a dynamic system. Activities and their order are driven
by unobservable inputs such as worker preferences, time, cost and competition
pressures. Business processes are used to manage operations and ensure adher-
ence to regulation, so changes may indicate developing problems or have legal
implications and should be detected quickly. Conversely, if the change is valid,
the process models need to be re-estimated to reflect the new reality.

To the best of our knowledge, this is the first study to consider process
mining in non-stationary environments in an online manner, in a principled way.
Business process research has discussed the need for flexibility and allowing for,
and timely detection of, process change [2, 3, 4]. Questions of how much data
is needed and how to identify when the process has changed, have been less
investigated. In [5] statistical tests on features in log files are used to identify
where in a log file the process changed. Here we build on our previous work [10]
to propose a principled approach to efficiently mine and detect change to both
model probabilities and structures, recovering the sequence of changed process
models. The model changes we can detect are of more subtle nature than those
detectable by re-estimation of standard process models, such as Petri nets.

2 Representations of Business Processes

In [8] we proposed a radically different view of processes as distributions over al-
lowed strings of activities. Traditionally, business processes are often represented

∗Phil Weber is supported by a Doctoral Training Grant funded by EPSRC and the School
of Computer Science, University of Birmingham.

37

ESANN 2012 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 25-27 April 2012, i6doc.com publ., ISBN 978-2-87419-049-0.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100967420.

Fig. 1: Petri net showing a simplified order process, with equivalent PDFA
labelled with symbols representing activities and their conditional probability.

by a restriction of Petri nets, Sound Workflow nets [7] (SWF-nets). An SWF-
net N = (S, T,W,M): T, S are finite sets of transitions and places, T ∩ S = ∅,
connected by arcs W ⊆ (S × T) ∪ (T × S). N has a single start and single end
place, with every transition on a path between them. Marking M : S → {0, 1}
describes the distribution of tokens over places and defines the state of the pro-
cess. A transition may fire when there is a token in each of its input places,
removing these tokens and adding a token to each of its output places. The ini-
tial (final) marking M0 (MF) is a single token in the start (end) place. When a
process is started from marking M0, all activities must be potentially executable,
and the process must terminate in MF . The Reachability Graph of N is the set
of markings reachable from M0 by firing a series of transitions.

SWF-nets concisely represent the process structure, but to detect change
the important question is what traces can be seen, with what probabilities. We
represent activities as symbols from a finite alphabet Σ, traces as strings x ∈ Σ+.
The true business process M is modelled by a probability distribution PM over
traces. Probability of trace x is PM(x), such that

∑
x∈Σ+ PM(x) = 1. An ‘event

log’ W is a finite multiset over Σ+, drawn i.i.d. from PM. The task of a process
mining algorithm is to learn from W a distribution PM′ , to approximate PM.

We use probabilistic deterministic finite automata (PDFA) [6] to represent
distributions generated by processes, as a common denominator to which other
representations can be converted. PDFA A is a five-tuple (QA,Σ, δA, q0, qF).
QA is a finite set of states; Σ an alphabet of symbols; q0, qF ∈ QA single start
and end states. δA : QA × Σ × QA → [0, 1] defines the conditional transition
probability function between states. δA(q1, a, q2) is the probability that given
we are in state q1, we parse a and arrive in state q2:

∑
a∈Σ,q∈Q δA(q1, a, q) = 1.

PDFA A generates a probability distribution PA on Σ+. The probability of
string x, PA(x), is found by multiplying the probabilities of the arcs followed to
parse x on its unique path from the single start state q0 to unique end state qF .
A PDFA can be obtained from the reachability graph of a SWF-net by labelling
arcs with probabilities, e.g. from frequencies of activities in an log.

38

ESANN 2012 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 25-27 April 2012, i6doc.com publ., ISBN 978-2-87419-049-0.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100967420.

3 Method for Model Estimation and Online Mining

In this first study we assume a real business process M generates traces into
a log file W without noise, and that we can model this process as a PDFA.
These assumptions allow process mining with the Alpha algorithm [9], which
uses simple rules to construct an SWF-net from the data in W . The main idea is,
since traces are generated randomly according to an unknown distribution, to use
the behaviour of the mining algorithm and probabilities of traces to determine
the minimum traces needed to be confident that the mining algorithm will create
the correct model, and thus that if a different model is produced, the underlying
model has changed, rather than being a feature of the sample.

To initially estimate M, we use the most recent n0 (a known over-estimate)
traces from W . We convert the Petri net mined by Alpha to a PDFA by labelling
its reachability graph with probability estimates derived from the frequencies of
activities in the traces used for mining. The distribution that this automaton
generates, PM, is the estimate of the underlying model M.

Alpha uses relations between pairs of activities in the traces in the log file, to
determine the structures to create in the Petri net. For two activities a, b from
the set A of activities in the model; a →n b (causal) if b always follows a in a
log of n traces, never vice-versa; a#n b (no relation) if a and b never follow each
other; and a ‖n b (parallel) if both ab and ba occur in the log. A sequence of
two activities a and b is created when a is causally related to b and no other,
i.e. a →n b and ∀c ∈ A, a �n c ∧ c �n b. An exclusive split from a to b1, b2 is
when a →n b1, a →n b2, b1 #n b2; and a parallel split when a →n b1, a →n b2,
b1 ‖n b2. Splits and joins with more activities are created similarly.

From these rules we derive formulae for the probability of Alpha discovering
these relations from the log, and hence correctly mining process structures, based
on the number of traces n, and the probabilities in the model. Let π(ab) be the
probability of ab occurring in a trace. We define Pα(a →n b) as ‘the probability
that Alpha infers relation a →n b over n traces’, similarly for the other relations.
These formulae give the probabilities for Alpha discovering these relations1 [8]:

Pα(a →n b) =
(
1− π(ba)

)n − (
1− π(ab)− π(ba)

)n
,

Pα(a#n b) =
(
1− π(ab)− π(ba)

)n
, and

Pα(a ‖n b) =1− (
1− π(ab)

)n − (
1− π(ba)

)n
+
(
1− π(ab)− π(ba)

)n
.

The following inequalities assume that the discovery of the relations are inde-
pendent of each other, and give close approximations to the probability of Alpha
mining an XOR (1) and parallel (2) split correctly from a log of n traces [8]:

Pα

(
a →n (b1# . . .#bm)

) ≤ ∏
1≤i≤m

Pα(a →n bi)×
∏

1≤i<j≤m

Pα(bi#nbj), (1)

Pα

(
a →n (b1 ‖ . . . ‖ bm)

) ≤ ∏
1≤i≤m

Pα(a →n bi)×
∏

1≤i<j≤m

Pα(bi ‖n bj). (2)

1We assume acyclic processes so ab and ba cannot occur together in a trace: π(ab∧ ba) = 0.

39

ESANN 2012 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 25-27 April 2012, i6doc.com publ., ISBN 978-2-87419-049-0.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100967420.

We combine these formulae for each structure by treating each structure as
conditionally dependent on the structures before it in the model, to determine
the probability of correctly mining the full model, e.g. for model PN in Fig.1,

Pα(PN) =Pα(i →n a)× Pα

(
a →n (b#n c)|i →n a

)×
Pα

(
b →n (d ‖n e)|a →n (b#n c)

)×

We use these formulae to obtain n such that when mining with n traces we will
with probability 1−ε return the Petri net corresponding to the underlying model
M , for a desired confidence level 0 < ε � 1. Thus if mining produces a different
model, we can have confidence 1− ε that the underlying process has changed.

To detect change, we mine repeatedly from Wn, the most recent n traces
from log file W , to obtain at each iteration a model M′. To determine if the
process has changed, we compare the distribution PM′ generated by M′, with
the ground truth PM. We use common statistical tests such as the Chi2 test to
detect if PM′ is significantly different from from PM.

Let T be the set of trace classes (unique traces) in W , and m = |T |. Since
we consider only acyclic models, T is finite. For each ti ∈ T , let PM(ti) be the
probability of ti under PM, and n(ti) the number of times ti occurs in Wn. n(ti)
is Binomially distributed and for large enough n, is approximately Normally
distributed. The difference between the expected and sample counts for each
trace class is also Normally distributed, so we test the sum of the differences:

χ2
s =

m∑
i=1

(
n(ti)− nPM(ti)

)2
nPM(ti)

, and p = Pr(χ2
m−1 ≥ χs) =

∫ ∞

χ2
s

f(χ2
m−1)d(χ

2
m−1),

where χ2
s is the sample Chi2 statistic and f(χ2

m−1) the density function of the
Chi2 distribution with m− 1 degrees of freedom. The ‘p-value’ p gives the prob-
ability that the Chi2 distribution would exceed the measured value, indicating
that with probability 1− p, the process has changed.

After detecting change, we wait for n traces, then re-estimate M and n.

4 Experimentation and Analysis

We used the PDFA in Fig.1 as the initial underlying model. 50 traces are
needed for 99% confidence in mining the correct Petri Net, but as probabilities
vary this can increase to 500. We tested a number of changes, results from a
limited selection of which are shown in table 1: (a) probability of b, c set to
0.1, 0.9, (b) prob. of d, e from q3 set to 0.5, (c) parallel execution of d, e after b,
changed to exclusive choice, (d) removed arc h from q7. Columns 1-5) show that
varying numbers of traces were estimated as necessary for mining. The changes
were discovered in each case, with no false positives, i.e. incorrect detection of
change. To correspond to the 99% confidence in mining, p-values below 0.01 were
taken as significant. The Kullback-Leibler divergence between each changed and
original estimate of the underlying model, is shown for comparison, but there
was no clear correspondence between these values and change detection.

40

ESANN 2012 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 25-27 April 2012, i6doc.com publ., ISBN 978-2-87419-049-0.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100967420.

Optimal Sample Large Sample
Change Sample Detect KL p-val Sample Detect KL p-val

(a) 271 22 0.026 0.007 500 18 0.013 0.034
(b) 45 16 0.163 0.010 500 47 0.013 0.040
(c) 45 15 0.167 0.007 500 195 0.015 0.043
(d) 45 49 0.421 0.004 500 393 0.016 0.034

Table 1: Results for four types of change (section 4). ‘Sample’ traces were used
for mining, change detected in ‘Detect’ iterations, ‘KL’ and ‘p-val’ record the
Kullback-Leibler Divergence and Chi2 p-value between new and previous esti-
mate of underlying model. ‘Optimal Sample’ results used the method described
for minimal sample size; ‘Large Sample’ used excessively large samples.

Fig. 2: A PDFA with same structure as Fig.1, but representing a significantly
different probability distribution.

As a comparison, we repeated the experiment mining from logs of 500 traces.
All changes were detected, but as columns 6-9 of table 1 show, in general many
more traces elapsed before detection.

Since we wait before re-estimation so that the traces used for mining will
all been drawn from the changed underlying model, a key contribution of our
method is that the mined models show the sequence of changed process models
over time. Also, in many cases change is significant, but only evident in the
PDFA probabilities (e.g. Fig.2), whereas the Petri net structure is unchanged.
So for change detection, a probabilistic modelling language such as PDFA seems
more appropriate than a purely structural representation.

To simulate a fast-changing environment we tried re-estimating the model
without waiting after detection. This results in false detections (Fig.3) until
enough traces have been generated for the log to reflect the new model. The
initially estimated model will be invalid as the log will contain a mix of traces
from the old and new models. However, although we cannot say with confidence
whether these changes are valid, we can suggest that there may have been a
change, and that after the n traces estimated as needed for confidence 1 − ε
in mining the correct model, have been generated, using p-value ε we can with
confidence 1− ε accept the next change detected as true.

5 Conclusion and Future Work

We presented a novel method for online mining of processes in non-stationary
environments. Using a probabilistic view of processes and mining algorithms,

41

ESANN 2012 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 25-27 April 2012, i6doc.com publ., ISBN 978-2-87419-049-0.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100967420.

50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

Iterations

X
2 p

−
va

lu
e

Chi2 p−value
Change Point
Detect Point
False Positives

Fig. 3: Detection of true and false changes in fast-changing environment, with
the model re-estimated immediately, rather than waiting, after change detection.

we can estimate (with a given confidence level) the number of traces needed for
mining, enabling confidence that discovered change is true rather than an arte-
fact of the log files. This allows us to recover the set of changed process models
in use over time. Also, whereas process mining typically uses non-probabilistic
representations such as Petri nets, we are able to discover change that is only
apparent in the probabilities in the model, while the structure is unchanged.
This first study leaves many open questions, such as whether the analysis can
be applied to more refined process mining algorithms, noisy log files, or complex
or unstructured processes. We hope to address some of these in future work.

References

[1] van der Aalst, W. M. P. and Weijters, A. J. M. M. Process mining: a research agenda.
Comput. Ind., 53(3):231–244, 2004.

[2] Rinderle, S., Reichert, M., and Dadam, P. Correctness criteria for dynamic changes in
workflow systems - a survey. Data Knowl. Eng., 50(1):9–34, 2004.

[3] Weber, B., Sadiq, S. W. and Reichert, M. Beyond rigidity - dynamic process lifecycle
support. Computer Science - R&D, 23(2):47–65, 2009.

[4] Schonenberg, H., Weber, B., van Dongen, B. F. and van der Aalst, W. M. P. Supporting
flexible processes through recommendations based on history. In Dumas, M., Reichert,
M., and Ming-Chien Shan (eds.), BPM 2008. LNCS vol. 5240, pp. 51–66. Springer, 2008.

[5] Bose, R. P. J. C., van der Aalst, W. M. P., Zliobaite, I. and Pechenizkiy, M. Handling
concept drift in process mining. In Mouratidis, H. and Rolland, C. (eds.), CAiSE 2011,
LNCS vol. 6741, pp. 391–405. Springer, 2011.

[6] Vidal, E., Thollard, F., de la Higuera, F., Casacuberta, F., and Carrasco, R. C. Prob-
abilistic Finite-State Machines - Part I. IEEE Trans. Pattern Anal., 27(7):1013 – 25,
2005.

[7] van der Aalst, W. M. P. (1998). The Application of Petri Nets to Workflow Management.
Journal of Circuits, Systems, and Computers, 8(1):21–66, 1998.

[8] Weber, P., Bordbar, B., and Tiňo, P.. A principled approach to the analysis of process
mining algorithms. In Yin, H., Wang, W., and Rayward-Smith, V. J. (eds.), IDEAL 2011,
LNCS vol. 6936, pp. 474–481. Springer, 2011.

[9] van der Aalst, W. M. P., Weijters, A. J. M. M., and Maruster, M. Workflow mining:
Discovering process models from event logs. IEEE Trans. Knowl. Data Eng., 16(9):1128–
1142, 2004.

[10] Weber, P., Bordbar, B., and Tiňo, P.. Real-Time Detection of Process Change using
Process Mining. In Jones A. V., (ed.), ICCSW 2011, pp. 108–114, London, 2011.

42

ESANN 2012 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 25-27 April 2012, i6doc.com publ., ISBN 978-2-87419-049-0.
Available from http://www.i6doc.com/en/livre/?GCOI=28001100967420.

