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Abstract—Business process models extracted from real event
data via process mining are often visually complex and hard
to interpret, cannot easily display all of the relevant process
data in one view, and are of unknown quality. It is therefore
difficult to present a meaningful comparison of two mined
process models, for example to confirm business changes have
had a significant effect. We propose a framework for comparing
process models, which integrates metrics, graph partitioning,
notions of statistical significance, and visualisation techniques.
This framework enables well-founded and intuitive methods for
understanding and exploring differences between processes.

Keywords—Business process mining, graph partitioning, visu-
alisation, probability distributions.

I. INTRODUCTION

Business process mining is the learning and analysis of
business process models, from event logs produced by infor-
mation systems. Fig.1 shows a simplified example of a process,
using an informal graphical representation. Nodes represent
tasks and arcs the causal relations between them, labelled with
frequencies of occurrence of the task or of following the arc,
in the data from which this model was mined.

Many mined processes are not so structured, due to flex-
ible work, process activity recorded at different levels of
abstraction (e.g. [1]), or multiple processes recorded together
(e.g. [2]). Traditional process mining algorithms then produce
visually complex ‘spaghetti’ [3] models. Methods to reduce
the complexity of models include clustering or aggregating
process instances [2], [4], [5] or nodes and arcs [6]–[8]. This
is not always desirable, e.g. if the most important questions
are what are are the ‘outlying’ or rare process flows or tasks.

Recently a cartographic metaphor has been proposed [3], [6]
for visualising processes, inspired by the use of line weight,
colour, etc. in maps. Node sizes are varied to indicate relative
significance (of tasks) or how many subnodes they aggregate,
arcs are weighted or coloured to indicate significance of the
relationships represented, and strength of correlation between
the tasks they connect. This visual metaphor is helpful in al-
lowing increased information to be conveyed in a manageable
way, but has not been applied to comparing process models.

Since businesses use processes to ensure efficient operation
or adherence to rules, it is critical to be able to compare
mined processes to detect unexpected change, or to measure
the effect of planned process changes. For complex processes,

∗P. Weber is supported by a Doctoral Training Grant funded by EPSRC and
the School of Computer Science, Birmingham, UK. This work was carried
out under the International Fellowship program at the Etisalat BT Innovation
Centre (EBTIC), Abu Dhabi, United Arab Emirates.

Fig. 1. Example process to handle a customer call for product support. Initial
testing is followed by user configuration or allocation to engineer or 3rd line
support. Several iterations can occur before the call is complete.

it is especially important to be able to pinpoint which parts
of the model have changed. To this end, many metrics have
been proposed to measure the difference between process
models, such as by counting nodes and arcs [9], quantifying
behavioural aspects in a particular representation (e.g. [10]),
or comparing with ‘reference’ log files [11].

Many metrics are specific to one representation such as
Petri nets, or are difficult to interpret, especially for complex
models: what is the meaning of a single number representing
the difference? What if parts of the model are similar while
other parts differ? In addition, metrics are usually limited to
the model structure and behaviour, and do not take account of
other process and task attributes which may be relevant.

Existing metrics also do not consider the significance of
differences. The underlying process is stochastic: sequences
of tasks (traces) occur with specific probabilities, so there
will be random variation in the frequencies of traces observed
in different logs produced by the process. This variation
may cause differences between models mined from different
event logs from the same process. The values calculated
for measures of difference between models therefore depend
on factors such as characteristics of the models, underlying
event probabilities, how much data was used and the learning



behaviour of the mining algorithm (see e.g. [12]).
We propose an interactive and flexible framework for com-

paring business process models, bringing together
1) metrics for comparing whole or part process models,
2) graph partitioning to compare the component parts of

process models at different levels of abstraction,
3) visualisation techniques to intuitively present the differ-

ences between complex models, and
4) statistical significance tests to give meaning to metrics

and quantify the confidence which can be placed in them.
Business process mining is an inherently practical activity,

needing flexible solutions which enable exploratory analysis.
Metrics and statistical analysis provide a rigorous foundation,
combined with visualisation techniques to allow differences
between models to be located, quantified and explored.

A framework allows choice of the best components for any
situation, and the use of improved methods in the future. Dif-
ferent metrics may be appropriate to different process repre-
sentations or applications, and the choice of graph partitioning
algorithm may depend on the type of graph representation or
how structured the process models are. Many approaches to
visualisation could be applied. The discussion of statistical
significance depends on what is known about the provenance
of the process data, behaviour of the mining algorithm, and
how faithfully the mined model represents probabilities in the
underlying model. All of these areas should be considered
together when comparing process models.

In this paper we describe and present
• our implementation of the components of this framework,

and initial results,
• extensions to the difference measures in [13] and [14]

to include processes with frequency information and
multiple data attributes, and

• extending the cartographic metaphor for understanding
complex process models, to visualisation of the differ-
ences between processes.

We briefly describe our event data and process model
definition, before describing our framework in section III.

II. PRELIMINARIES

A. Event Data

Assume a business process which records the execution of
process instances, i.e. sequences of tasks with a defined start
and end task. Task start and end times are recorded, together
with names and values for other task and process attributes.

B. Process Model

We exemplify our framework using a process definition
from a particular industrial context, presented in [15]. A
process is a directed graph G = (V,E, T, l, f, g,DV , DG):
• V is a set of nodes representing tasks. T is a set of task

names. Nodes v(i) ∈ V are labelled with names from T
by function l : V → T .

• E ⊂ V ×V are edges describing relations between tasks.
We write v(i) → v(j) for arc from node v(i) to v(j).

• functions f : V → N and g : E → N assign frequencies
of use (‘weights’) to nodes and arcs. We write f(i) for
weight of node v(i), g(ij) for weight of arc v(i) → v(j).

• DG ⊂ (AG × dG), DV ⊂ (V × AV × dV ) are sets of
attribute names AG, AV and values dG, dV , associated
with process instances and tasks respectively.

The mining algorithm naı̈vely constructs a process model
from instances in such a way that the type (exclusive choice or
parallel split) of splits and joins cannot be determined. Hence
our models are not formally parsable, and we treat them as
simple directed graphs. Fig.1 shows a simple example process.

III. AN IMPLEMENTATION OF THE FRAMEWORK

Next we describe and evaluate an implementation of the
framework, applied to processes as defined in section II.

A. Metrics for Comparison by Node and Arc Frequencies

We build on the adjacency matrix comparison method of
[13] to calculate a weighted average of the difference between
the graphs’ (weighted) arcs and (weighted) nodes. These are
comparable to the metrics of [14].

We consider two process models G1 = (V1, E1, l1, f1, g1),
G2 = (V2, E2, l2, f2, g2)1, with N1 = |V1|, N2 = |V2| nodes
respectively, N unique nodes in total which may be in one or
both models, i.e. |V1 ∩ V2| ≥ 0, N = |V1 ∪ V2| ≤ N1 +N2.

The simplest comparison is of weights of nodes and arcs
in the two models. Assume that both models were generated
from the same number of process instances, or that frequencies
have been scaled as though this was the case.

Following [13] we define N × N ‘normalised’ adjacency
matrices A1 and A2 for for G1, G2. The matrix elements
a
(ij)
k∈{1,2} are set to the proportion of process instances from

the arc’s source node v(i)k that follow the arc to node v(j)k . If
node v(i)k is labelled with frequency fk(i), and the arc from
v
(i)
k to v(j)k with frequency gk(ij), then

a
(ij)
k =

gk(ij)

fk(i)
∈ [0, 1]. (1)

a
(ij)
k = 0 if there is no arc between the nodes.
We also define a N × N node similarity matrix S. Nodes

are matched on task name, or using other methods, e.g. from
[14], to allow for duplicately-labelled tasks or to match nodes
by their context (e.g. neighbourhood) in the graph. Let

d(i, j) =
f1(i)− f2(j)

f1(i) + f2(j)
∈ [−1, 1] (2)

be the signed ‘distance’ between matched nodes v
(i)
1 ∈

V1, v
(j)
2 ∈ V2, labelled with frequencies f1(i), f2(j) respec-

tively. The elements s(ij) of the node similarity matrix S
are set to sign

(
d(i, j)

)
− d(i, j) if the nodes are matched,

else 0. (The sign function returns 1 for a positive or zero
argument, −1 for a negative argument). When nodes in G2

match uniquely with nodes in G1 and vice versa, N is a
diagonal matrix, the identity matrix if all nodes match exactly.

1For simplicity we omit notation not relevant to the discussion here.



We now define a Graph Edit Distance

g = w ·∆A + (1− w) ·∆N , w ∈ [0, 1], (3)

a weighted combination of arc difference ∆A and node dif-
ference ∆N between G1, G2, for weighted nodes and arcs:

∆A is a sum-of-squares measure of arcs differences

∆A =
1

|E1|+ |E2|
tr
(
(A1 −A2)(A1 −A2)T

)
, (4)

where AT is the transpose of matrix A, tr(A) the trace of A,
the sum of squares of the elements on the leading diagonal.
∆A ∈ [0, 1] since the maximum difference is when none of
the arcs have an equivalent in the other model. Then the trace
is (|E1|+ |E2|) · (1− 0)2, which we use to scale the measure.
The minimum is zero when all arcs are matched.

∆N is a sum-of-squares measure of nodes differences

∆N = 1− 1

N
tr(S × ST ). (5)

∆N ∈ [0, 1] with maximum 1 when all N nodes correspond.

B. Comparison by Data Attributes

The previous methods compare process models using the
visible information from the graphical representation, but other
data attributes underlying two similarly-structured process
models may be relevant when comparing the real processes.

While a mapping can be constructed between the nodes in
two graphs (approximately if duplicate labels are allowed),
many values for each task attribute may be associated with
each node, as attributes take different values in each process
instance. Comparison of nodes v

(i)
1 , v

(j)
2 by attribute C ∈

{AG∪AV } is now between vectors representing samples from
two underlying distributions Pr(i)1 , P r

(j)
2 over possible values

of C for the two nodes. Pr(i)k∈1,2 is the distribution of values
that C can take for the task, in the process underlying Gk.

To compare nodes on a categorical attribute Ccat (e.g.
department or user IDs), we compare distributions over the
frequencies of values that Ccat takes using a metric such as
the Euclidean Distance

d2(Pr
(i)
1 , P r

(j)
2 ) =

√∑
x

(
Pr

(i)
1 (x)− Pr(j)2 (x)

)2
, (6)

where x is defined over the union of the possible values
of attribute Ccat for nodes v(i)1 , v

(j)
2 . Pr(i)k (x) is the sample

probability Pr
(i)
k (Ccat = x), estimated as the fraction of

process instances passing through the node, for which Ccat
took the value x, i.e.

Pr
(i)
k (x) =

|x|
fk(i)

. (7)

Now we set the elements of the similarity matrix

s
(ij)
cat = 1− d2(Pr

(i)
1 , P r

(j)
2 ). (8)

We compare a continuous attribute Ccont (such as task
duration) by calculating the mean values c(i), c(j) of the
attribute for tasks v(i)1 , v

(j)
2 and compare in the same way as the

frequencies (section III-A). Let c(v(i)k ,m) be the value taken
by attribute Ccont in the mth process instance associated with
node v(i)k in model Gk, k ∈ {1, 2}. Then

c(i) =
1

fk(i)

∑
1≤m≤fk(i)

c(v
(i)
k ,m). (9)

Now we set the elements of the similarity matrix S

s
(ij)
cont = 1− c(i) − c(j)

c(i) + c(j)
. (10)

We use a weighted combination of these attribute similarity
measures to obtain a total attribute similarity between two
nodes, based on multiple attributes:

s(ij) =
∑

1≤p≤q

wp · s(ij)p , (11)

for q attributes, 0 ≤ wp ≤ 1,
∑

1≤p≤q wp = 1. s(ij)p is the
similarity of nodes v(i)1 , v

(j)
2 based on the pth attribute.

C. Graph Clustering and Partitioning

We use graph partitioning to recursively split process
models G1, G2 into logical subgraphs, calculate the metrics
between pairs of subgraphs as though between full process
models, and use to match pairs with the lowest distance. We
recursively repeat this process on the matched subgraphs until
no further partitioning is possible. In this way ‘areas’ of the
models which differ can be identified, iteratively focussing to
specific differences, facilitating comparison of complex pro-
cess models. We also use the partitioning results to visualise
differences at different levels of abstraction (section III-D).

There are many methods for graph partitioning. We used
Edge Betweenness (see e.g. [16]) and Spectral Partitioning
(see e.g. [17]), but since our models are relatively unstructured,
characterised by nodes with high centrality, more process-
specific methods may be more possible.

D. Visualisation

We visualise differences between processes using colour
schemes inspired by relief maps, which use colour to depict
altitude. We colour nodes, arcs and subgraphs using a palette
from blue to red, set as shown in Fig.2. Colour indicates how
frequencies of arcs, nodes, or parts of one model, compare
to their equivalents in the other. Elements or areas in one
model only, or with much higher frequency in that model,
are coloured at the red end of the spectrum. Corresponding
elements in the other model, towards the blue end of the
spectrum. The resulting pairs of coloured models are the
inverse of each other and can be considered as ‘relief’ maps
visualising the frequencies. Each model shows frequencies
‘above’ and ‘below’ the corresponding parts of the other,
which is metaphorically at ‘sea level’ (Fig.3).

Colouring is achieved by parsing the normalised adjacency
difference A1−A2 and node similarity S matrices, whose ele-
ments are signed. Controlling opacity and line weights enables
clearer highlighting of the bigger differences. Visualisation
should be user-controllable to allow exploration of the models.



Fig. 2. Colour settings for visualisation, using colour spectrum from
blue (relative low frequency of arc or node usage) through green, to red
(relative high frequency). The graphs indicate the setting of the R,G,B colour
components from the frequency differences between the two process models.

E. Significance and Confidence

Business processes are stochastic in that tasks and paths
through the process will occur with particular probabilities.
Different logs used for mining the same process are therefore
random samples from an unknown underlying probability
distribution over process instances, and the structure and
frequencies in the mined model may vary according to the
distribution of process instances in the sample log.

If differences are found between process models, we need to
know whether the underlying processes are truly different, or
whether the processes are the same and the differences in the
models due to sampling variation. Since in this paper we do
not know the underlying process distributions, and the mod-
elling formalism is not probabilistic, we cannot say anything
about the significance of the overall difference between the
processes, beyond setting arbitrary thresholds on the metrics.

Instead, we compare individual arc and node frequencies.
Assume we are comparing G1 and G2, mined from n1, n2
process instances respectively. The frequencies g1(ij) on arcs
a
(ij)
1 leaving node v

(i)
1 sum2 to the source node frequency

f1(i). From these frequencies we estimate the conditional
probability p

(ij)
1 = g1(ij)

f1(i)
of following arc a

(ij)
1 , i.e. the

probability that after task v(i)1 , the next task will be v(j)1 .
To simplify, we take G1 as the ground truth (i.e. as repre-

senting the true process model)3. Then we model the number
of times the arc is followed, by a random variable π which
follows a Binomial distribution with probability parameter
p
(ij)
1 , i.e. π ∼ Bin(p

(ij)
1 , n1). Then the probability ε under

this distribution of seeing the arc frequency g2(ij) observed
in the second model is

ε =

∫ π=g2(ij)

π=−∞
Bin(p

(ij)
1 , n2)dπ, if g2(ij) < g1(ij),

ε =

∫ π=∞

π=g2(ij)

Bin(p
(ij)
1 , n2)dπ. otherwise. (12)

We reject the null hypothesis h0 that the probability of the
arc in the underlying distribution for each model is unchanged,

2Here we assume all splits represent exclusive choice, no parallelism in the
model, which would make estimation of arc probabilities more difficult.

3This is approximate. In reality G1 and G2 are both built from samples
from underlying distributions, so we should calculate the joint probability
of f(a

(ij)
1 ) and f(a

(ij)
2 ) being drawn from the same Binomial distribution,

integrated over the distributions for all possible values of parameter p(ij)1 ).

(a) (b)

Fig. 3. Comparison of processes using node and arc frequencies. Arcs
and nodes (a) weighted and coloured to show relative frequency of use, (b)
coloured red/blue to indicate significant differences at chosen significance
threshold (e.g. 95%), with insignificant arcs faded out.

if ε < α for some chosen threshold 0 < α� 1.
We treat nodes similarly, modelling the frequency on the

node using a Binomial distribution, assuming that the task
either occurs in a process instance or does not4.

IV. EXPERIMENTATION AND DISCUSSION

We illustrate the results produced by our method. Fig.3
shows the visualisation of frequency differences (section III-A)
between two simple processes with the same structure but
different frequencies (tasks 10 and 28). We show one of each
pair only, since the paired models differ only in the inversion
of colours. Fig.3(a) uses colouring and line width to show
all differences in frequencies, e.g. for further investigation.
Fig.3(b) focusses on just those differences which are unlikely
to be the result of random variation, by highlighting only
differences significant at the 95% threshold.

Fig.4 illustrates graph partitioning and colouring (section
III-C) to ‘map’ the differences between two more complex
processes. These are produced from artificial data, with two
differences introduced, annotated as A and B. The frequency
of the path between two tasks has been changed (A), and
two tasks swapped (B). The colours of these areas are “more
red” in one model, “more blue” in the other, along with
corresponding colouring and width of the arcs and nodes
involved. Unfortunately the graph partitioning algorithm has
been influenced by differences in the graphs to partition them
differently, leading to the spurious colouring at C. In future
work we plan to develop more process-appropriate clustering
and partitioning methods, for example using process patterns
or centrality of nodes and directedness of these graphs.

4This is not so satisfactory, since the task frequency is dependent on its
location on the model, and therefore may be affected by changes to probability
elsewhere in the model.



(a)

(b)

Fig. 4. Partitioning and visualisation of differences between two more
complex, structurally similar process models. Main areas of difference high-
lighted A) frequencies, B) swap of tasks 10 and 26, C) spurious (artefact of
partitioning, see text).

Table I shows the metrics between the matched subgraphs
focussing in to differences A and B. Here there is no clear
relationship between the metric and the level of abstraction.
Further work could also explore this relationship and develop
difference measures which are more intuitive in this context.

V. CONCLUSION

We presented a framework for comparing complex process
models, combining process comparison metrics, statistical
methods, graph clustering and visualisation. We showed that

TABLE I
NESTED GRAPH PARTITIONS AND DIFFERENCES BETWEEN MATCHED

SUBGRAPHS, FOCUSSING ON THE TWO MAIN CHANGES IN FIG.4.

Swapped Tasks Changed Frequency

Group 0 (difference 0.206)→
3 (0.148)→ 6 (0.074)→
9 (task 26) & 8 (task 10)

Group 1 (0.048)→
11 (0.095)→ 20 (0.075)→
22 (0.401)→
25 (task 29) & 24 (task 30)

this allows well-founded but flexible and intuitive comparison
of process models, to understand significant differences. A
fuller description and analysis will be published elsewhere.

REFERENCES

[1] R. P. J. C. Bose, H. M. W. E. Verbeek, and W. M. P. van der Aalst,
“Discovering hierarchical process models using prom,” in CAiSE Forum,
ser. CEUR Workshop Proceedings, S. Nurcan, Ed., vol. 734. CEUR-
WS.org, 2011, pp. 33–40.

[2] G. Greco, A. Guzzo, and L. Pontieri, “Discovering expressive process
models by clustering log traces,” IEEE Trans. Knowl. Data Eng., vol. 18,
no. 8, pp. 1010–1027, 2006.

[3] W. M. P. van der Aalst, Process Mining: Discovery, Conformance and
Enhancement of Business Processes. Heidelberg Dordrecht London
New York: Springer, 2011.

[4] R. P. J. C. Bose and W. M. P. van der Aalst, “Context aware trace
clustering: Towards improving process mining results,” in SDM. SIAM,
2009, pp. 401–412.

[5] M. Song, C. W. Günther, and W. M. P. van der Aalst, “Trace clustering
in process mining,” in BPM Workshops, ser. LNBIP, D. Ardagna,
M. Mecella, and J. Yang, Eds., vol. 17. Springer, 2008, pp. 109–120.

[6] C. W. Günther and W. M. P. van der Aalst, “Fuzzy mining - adaptive
process simplification based on multi-perspective metrics,” in BPM,
ser. LNCS, G. Alonso, P. Dadam, and M. Rosemann, Eds., vol. 4714.
Springer, 2007, pp. 328–343.

[7] C. W. Günther, A. Rozinat, and W. M. P. van der Aalst, “Activity
mining by global trace segmentation,” in BPM Workshops, ser. LNBIP,
S. Rinderle-Ma, S. W. Sadiq, and F. Leymann, Eds., vol. 43. Springer,
2009, pp. 128–139.

[8] B. F. van Dongen and A. Adriansyah, “Process mining: Fuzzy clus-
tering and performance visualization,” in BPM Workshops, ser. LNBIP,
S. Rinderle-Ma, S. W. Sadiq, and F. Leymann, Eds., vol. 43. Springer,
2009, pp. 158–169.

[9] S. Pinter and M. Golani, “Discovering workflow models from activities’
lifespans,” Computers in Industry, vol. 53, no. 3, pp. 283–96, 2004.

[10] A. Rozinat and W. M. P. van der Aalst, “Conformance checking of
processes based on monitoring real behavior,” Information Systems,
vol. 33, no. 1, pp. 64–95, 2008.

[11] A. K. Alves de Medeiros, W. M. P. van der Aalst, and A. J. M. M.
Weijters, “Quantifying process equivalence based on observed behavior,”
Data Knowl. Eng., vol. 64, no. 1, pp. 55–74, 2008.

[12] P. Weber, B. Bordbar, and P. Tino, “A principled approach to the analysis
of process mining algorithms,” in IDEAL, ser. LNCS, H. Yin, W. Wang,
and V. J. Rayward-Smith, Eds., vol. 6936. Springer, 2011, pp. 474–481.

[13] J. Bae, L. Liu, J. Caverlee, L.-J. Zhang, and H. Bae, “Development of
distance measures for process mining, discovery, and integration,” Int’l
Journal of Web Serv. Res., vol. 4, no. 4, pp. 1–17, 2007.

[14] R. M. Dijkman, M. Dumas, B. F. van Dongen, R. Käärik, and
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