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Telepathy?
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Human Speech Recognition
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Automatic Speech Recognition
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Automatic Speech Recognition

Automatic Speech Recognition
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How to Make an Automatic Speech Recogniser

1. Feature Extraction 2. Modelling 3. Decoding
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Feature Extraction – Human Speech Audio

Waveform – amplitude over time, sum of many frequencies.

Spectrogram – frequency representation – Vowels.

Spectrogram – frequency representation – Consonants.
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Feature Extraction – Standardised Process (MFCCs)

Performance analysis of isolated Bangla speech recognition system using Hidden Markov Model, Abdullah-al-MAMUN, Firoz
Mahmud, IJSER 6(1):540-545, 2015.
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Modelling – Until (Relatively) Recently

1 Template matching, dynamic time warping: to around 1980s.
— limited scope, e.g. digit recognition.

2 Probabilistic modelling:
— Hidden Markov Models dominate to 2000s.

Source: The HTK Book, 2002, Fig 1.3.

3 Deep Neural Networks dominate from late 2000s.
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Modelling – Present

Deep Neural Networks effectively model complex acoustic distributions.
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Modelling – Present

Recurrent Neural Networks additionally model (some) temporal aspects.
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Modelling – Present

Long Short-Term Memory adds finer control of temporal modelling.
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Decoding

Evaluate probability of ‘all possible’ sequences of
sounds into words, into sentences, into ... meaning?
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State of the Art

State of the Art (examples):

Google 2.6% Word Error Rate (WER) on ‘LibriSpeech960h’ dataset:

SpecAugment + Listen Attend Spell:
6.8% on conversational speech (‘Switchboard’).

Facebook 3.5% WER:

4-layer CD-HMM-LSTM, 800 ‘memory cells’ per layer, 6,133 outputs
Language Model: 80,000 words, 200 million n-grams.

Toolkits:

Issues? — What about the real world?

1 “PwC: Lack of trust in AI assistants like Alexa could hinder adoption”.

2 100,000s to millions of parameters ... Why?

3 What happened to our knowledge of human speech?

Park et al., SpecAugment: A Simple Data Augmentation Method for Automatic Speech Recognition, Interspeech, 2019.
Serdyu et al., Towards end-to-end spoken language understanding, Facebook AI Research, c2018.
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Where is the balance?
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Models Inspired by Human Speech

Models inspired by human speech

perception and production

(Work with colleagues at the University of Birmingham)
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Models Inspired by Human Speech

Continuous-State Hidden Markov Model (CSHMM).

Vowels: ‘Dwell-Transition’ model tracking formants, or ...

Human voice stationary in target vowel, smooth transition to next.
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Models Inspired by Human Speech

Continuous-State Hidden Markov Model (CSHMM).

Consonants: ‘Dwell-only’ model tracking high-energy bands

Turbulence in specific frequency bands, abrupt transitions.
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Bottleneck Network Feature Extractor
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Bottleneck Features fit the CSHMM well

Top: Bottleneck features (pink) fit the model much better (blue).

Bottom: Formants (pink) extremely variable, especially for non-vowels.
Initial phone estimates (green) not discriminating.
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Phone Recognition Results

Phone error rates (% sounds classified correctly):

Model Features Dimension %Err # Parameters

DNN state-of-art MFCC 39 18.0 ??? × 106

HMM traditional MFCC 39 29.1 1.4 × 107

HMM traditional BNF 9 29.4 2.3 × 105

CSHMM faithful BNF 9 36.5 535

Bottleneck features perform equally well with lower dimension.

‘Faithful’ CSHMM model not (yet) competitive with state of the art.

— but using very few parameters.
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Automatic : Human Speech

Relating human speech science and automatic

speech models

(Work with colleagues at the University of Birmingham)
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Automatic : Human Speech recognition – Vowels

Human vowel space diagram (left) vs two of bottleneck feature (2 of 3D):

[Hawkins, 2005]

Neural network (right) learns something very similar.
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Automatic : Human Speech – Consonants

Research in human perception (left) tells us what energy cues are
important:

banded energy low to high + duration
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[Li & Allen, 2012]

Features based on these bands work best for CSHMM recognition.
Similar features appear in models learned from data (right).
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Automatic : Human Speech – All Sounds

2 dimension bottleneck feature mapping (left) is relatable to human
speech production and perception,

9 dimension neuron activations over time (right) recall the science of
perceptual cues and suggest learned roles for different neurons.
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Automatic : Human Speech – Other Layers

LDA compressions of 512 dimension (non-bottleneck) hidden layers
show interpretable mappings,

increasing sharpness with closeness to the output layer (left to right)
recalls theories relating DNNs to cognition.

Linxue Bai, PhD Thesis, 2017, UK Speech 2019
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So What?
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Thank you!
p.weber1@aston.ac.uk | https://weberph.bitbucket.io
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