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Human Speech Recognition
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Automatic Speech Recognition
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Automatic Speech Recognition

Automatic Speech Recognition
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How to Make an Automatic Speech Recogniser

1. Feature Extraction 2. Modelling 3. Decoding
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Feature Extraction — Human Speech Audio

Waveform — amplitude over time, sum of many frequencies.

Spectrogram — frequency representation — Vowels.
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Spectrogram — frequency representation — Consonants
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Feature Extraction — Standardised Process (MFCCs)
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Performance analysis of isolated Bangla speech recognition system using Hidden Markov Model, Abdullah-al-MAMUN, Firoz
Mahmud, IJSER 6(1):540-545, 2015.
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Modelling — Until (Relatively) Recently

© Template matching, dynamic time warping: to around 1980s.
— limited scope, e.g. digit recognition.

© Probabilistic modelling:
— Hidden Markov Models dominate to 2000s.
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Source: The HTK Book, 2002, Fig 1.3.

© Deep Neural Networks dominate from late 2000s.
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Modelling — Present

Deep Neural Networks effectively model complex acoustic distributions.

Output phone posterior probabilities
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Modelling — Present

Recurrent Neural Networks additionally model (some) temporal aspects.

Output phone posterior probabilities
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Modelling — Present

Long Short-Term Memory adds finer control of temporal modelling.

Output phone posterior probabilities
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Decoding

Probability distribution Probability distribution Probability distribution
over sounds over words over sentence structures
e .") e
- - - "n-best list" for scoring
Trained Trained Trained What the person said...

Lexicon or hp{ Language Model fmfp "What person said..

P "War the parson sai
Dictionary or Grammar "What deeper son says..."

Evaluate probability of ‘all possible’ sequences of
sounds into words, into sentences, into ... meaning?
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State of the Art

State of the Art (examples):

@ Google 2.6% Word Error Rate (WER) on ‘LibriSpeech960h’ dataset:

@ SpecAugment + Listen Attend Spell:
@ 6.8% on conversational speech (‘Switchboard’).

@ Facebook 3.5% WER:

@ 4-layer CD-HMM-LSTM, 800 ‘memory cells’ per layer, 6,133 outputs
o Language Model: 80,000 words, 200 million n-grams.

Toolkits: @®KALDI

Issues? — What about the real world?
@ “PwC: Lack of trust in Al assistants like Alexa could hinder adoption’.
© 100,000s to millions of parameters ... Why?
© What happened to our knowledge of human speech?

Park et al., SpecAugment: A Simple Data Augmentation Method for Automatic Speech Recognition, Interspeech, 2019.

Serdyu et al., Towards end-to-end spoken language understanding, Facebook Al Research, c2018.
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Where is the balance?

Data Knowledge
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Models Inspired by Human Speech

Models inspired by human speech
perception and production

(Work with colleagues at the University of Birmingham)
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Models Inspired by Human Speech

Continuous-State Hidden Markov Model (CSHMM).

Vowels: ‘Dwell-Transition' model tracking formants, or ...
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Human voice stationary in target vowel, smooth transition to next.
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Models Inspired by Human Speech

Continuous-State Hidden Markov Model (CSHMM).

Consonants: ‘Dwell-only’ model tracking high-energy bands
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Turbulence in specific frequency bands, abrupt transitions.
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Bottleneck Network Feature Extractor

Output phone posterior probabilities
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Bottleneck Features fit the CSHMM well

Top: Bottleneck features (i) fit the model much better (blue).
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Bottom: Formants () extremely variable, especially for non-vowels.
Initial phone estimates (green) not discriminating.
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Phone Recognition Results

Phone error rates (% sounds classified correctly):

Model Features Dimension %Err # Parameters
DNN state-of-art MFCC 39 18.0 7?77 x 106
HMM traditional MFCC 39 291 1.4x 107
HMM traditional BNF 9 204 2.3 x10°
CSHMM faithful BNF 9 365 535

@ Bottleneck features perform equally well with lower dimension.
@ ‘Faithful’ CSHMM model not (yet) competitive with state of the art.

@ — but using very few parameters.
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Automatic : Human Speech

Relating human speech science and automatic
speech models

(Work with colleagues at the University of Birmingham)
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Automatic : Human Speech recognition — Vowels

Human vowel space diagram (left) vs two of bottleneck feature (2 of 3D):
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[Hawkins, 2005]
Neural network (right) learns something very similar.
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Automatic : Human Speech — Consonants

Research in human perception (left) tells us what energy cues are
important:

Time Truncation (TR07)

Gorolaion Hariors
s t a !

Probability

High/Low Pass (HL07)

banded energy low to high + duration

HP!
L

25 30 35 40 45 50 55 0 020406081 “
Time [cs] (1¢s=0.01s) Probability

6 8 10
banded energy low to high + duration

[Li & Allen, 2012]
Features based on these bands work best for CSHMM recognition.
Similar features appear in models learned from data (right).
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Automatic : Human Speech — All Sounds

@ 2 dimension bottleneck feature mapping (left) is relatable to human
speech production and perception,

@ 9 dimension neuron activations over time (right) recall the science of
perceptual cues and suggest learned roles for different neurons.
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Automatic : Human Speech — Other Layers

@ LDA compressions of 512 dimension (non-bottleneck) hidden layers
show interpretable mappings,

@ increasing sharpness with closeness to the output layer (left to right)
recalls theories relating DNNs to cognition.

2 Plosive

Linxue Bai, PhD Thesis, 2017, UK Speech 2019
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Human

. * Interpretable Al is crucial
Intelligence

* Human [intelligence] and
Artificial [intelligence] can
(should) inform each other

* Human speech science informs
ASR development

* ASR development can inform

human speech science * Humans and technologists

should talk!

* What we learned may help us do .
better with ASR Artificial

Intelligence
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Thank youl!
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