Design principles and validation of core software tools

Forensic Data Science Laboratory

Aston University, Birmingham, UK

http://forensic-data-science.net/

Design principles and validation of core software tools

Design principles

State of the art technology

Validation of core software tools

Design principles and validation of core software tools

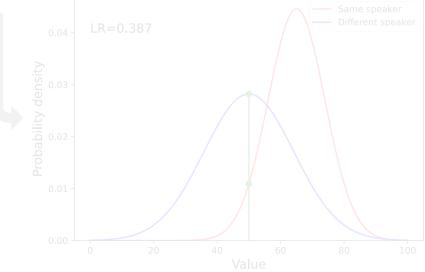
Purpose: forensic voice comparison research and casework

Fundamental:

Strength of evidence : numeric likelihood ratio Reduce potential for cognitive bias Meet legal admissibility standards

Basis:

Relevant **data** Quantitative **measurements** Statistical **models**



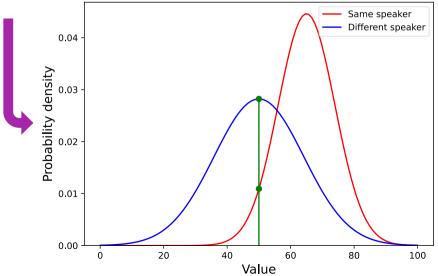
Purpose: forensic voice comparison research and casework

Fundamental:

Strength of evidence : numeric likelihood ratio Reduce potential for cognitive bias Meet legal admissibility standards

Basis:

Relevant **data** Quantitative **measurements** Statistical **models**



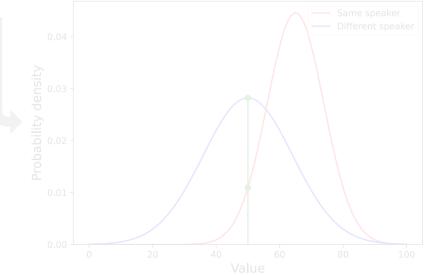
Purpose: forensic voice comparison research and casework

Fundamental:

Strength of evidence : numeric likelihood ratio Reduce potential for cognitive bias Meet legal admissibility standards

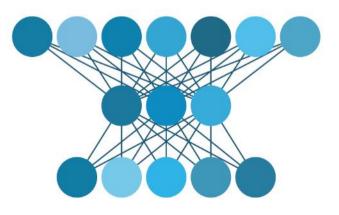
Basis:

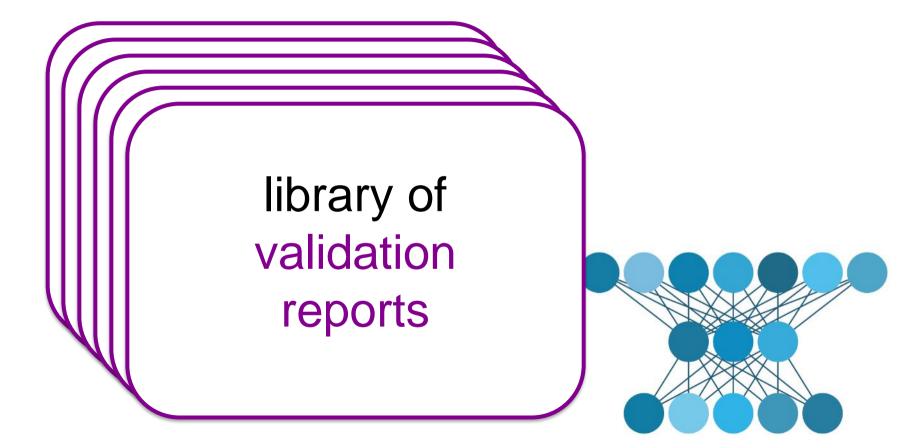
Relevant data Quantitative measurements Statistical models



System in the broad sense.

Includes ...





Design principles and validation of core software tools

Based on the state-of-the-art in Automatic Speaker Recognition:

Answer a **specific question**:

"How likely are we to obtain the **properties** on the questioned-speaker and known-speaker recordings if ...

1. they were produced by the **same speaker randomly selected** from the **relevant** population

- VS
- 2. they were produced by **different speakers randomly selected** from the **relevant** population?"

Based on the state-of-the-art in Automatic Speaker Recognition:

Answer a **specific question**:

"How likely are we to obtain the **properties** on the questioned-speaker and known-speaker recordings if ...

- 1. they were produced by the **same speaker randomly selected** from the **relevant** population
 - VS
- 2. they were produced by **different speakers randomly selected** from the **relevant** population?"

Based on the state-of-the-art in Automatic Speaker Recognition:

x-vector → fixed-length representation of a whole recording

produced by a deep neural network (machine learning)

statistical modelling \rightarrow

to produce a score

calibration \rightarrow

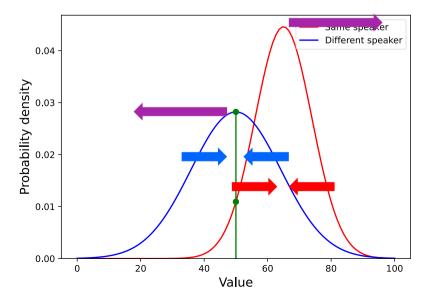
to produce a (calibrated) likelihood ratio

Overall:

account for between-speaker variation

ignore within-speaker variation

compensate for recording condition variation

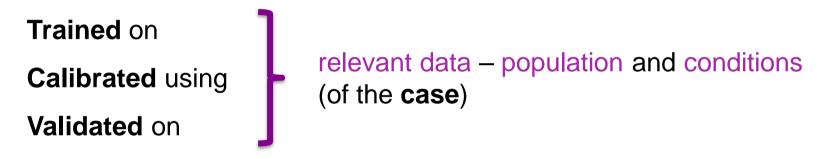


Design principles and validation of core software tools

Morrison, G.S. et al. (2021). Consensus on validation of forensic voice comparison. Science & Justice 61:299–309.

"In the **context of a case**, given the results of an **empirical validation** of a forensic-voice-comparison system, how can one decide **whether the system is good enough** for its output to be used in court?"

(Specific question ... two mutually-exclusive propositions)



Validated using new data

recording pairs : same-speaker and different-speaker **case conditions :** questioned- and known-speaker.

Make subjective decisions early to reduce cognitive bias:

e.g.

identifying population and conditions choosing **sufficiently** representative data choosing **sufficient** speakers

using separate data (speakers) for training, calibration and validation

Evaluate with standard metric and visualisations

Metric: Cost of Log Likelihood Ratio C_{IIr}

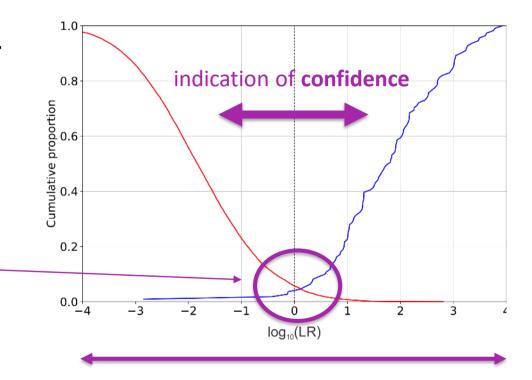
Average penalty for misleading or uninformative likelihood ratios.

- $C_{\text{IIr}} \rightarrow 0$: more informative system for this case
- $C_{\text{IIr}} \rightarrow 1$: less informative system for this case
- $C_{\text{llr}} > 1$: miscalibration or error

Evaluate with standard ...

Visualisation: Tippett plot

indication of calibration



range of LR values expected

Design principles and validation of core software tools

E³FS³: Three-fold Validation

E³FS³: Three-fold Validation

1. Benchmark on forensic_eval_01

- 2. Australian English male: simulated case-specific conditions
- 3. Australian English **female**: simulated case-specific conditions

1. Benchmark on forensic_eval_01

→ E³FS³ performs well on **known benchmark**:

2016–2019 virtual special issue of

Speech Communication (journal)

Data: Male speakers of Australian English.

Defined:

Questioned-speaker condition:

46s landline phone call: babble noise, compressed.

Known-speaker condition:

126s interview, reverberant room.

Training set:423 recordings, 105 speakers.Calibration / validation:223 recordings, 61 speakers.

train front-end:

generic:

train back-end:

case-specific:

generic:

calibrate & validate:

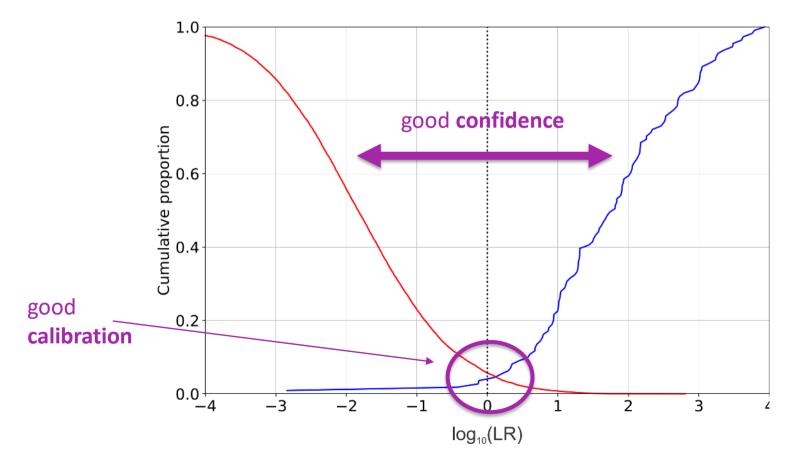
forensic_eval_01 training set **adapted** to case conditions

1000s of recordings & speakers

case-specific:

forensic_eval_01 validation set

System Name	System Type	C _{IIr}	
	GMM-UBM	c 0.6	
	i-vector	c 0.4	
VOCALISE 2019A	x-vector	0.246	
E ³ FS ³ alpha	u	0.208	
Phonexia BETA4	u	0.207	



E³FS³: Three-fold Validation

1. Benchmark on forensic_eval_01

→ E³FS³ performs well on known benchmark

Equal to prior best-performing systems.

→ Confidence to proceed with the case-specific validation

2. & 3. Case-specific validation

The case:

. . .

Female speakers of Australian English.

Multiple known-speaker recordings

 \rightarrow we used 120s sections.

Multiple questioned-speaker recordings

in different durations.

 \rightarrow we ran multiple validations.

2. & 3. Case-specific validation

The case:

Telephone calls from mobile to call centre.

Manually diarized (careful process).

Three questioned-speaker conditions.

One same as the known-speaker condition.

No apparent background **noise**.

2. Male: case-specific conditions

Close to the case.

Final chance to change the system.

2. Australian English male: simulated case-specific conditions

2. Male: case-specific conditions

train front-end:

generic:

1000s of recordings & speakers

train back-end:

case-specific:

generic:

calibrate & validate:

case-specific:

simulated from clean data

adapted to case conditions

simulated from clean data

Base data

male & female speakers (Australian English).

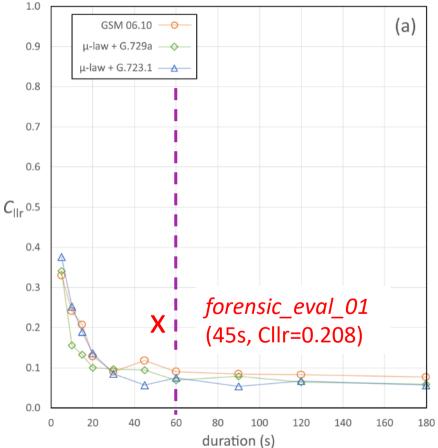
Subjective choices from:

Multiple speaking tasks \rightarrow case conditions Multiple recording sessions \rightarrow k & q recordings Train / calibrate / validate split

Simulate from high-quality audio:

- \rightarrow Apply codecs, compression, etc. as per case
- → Extract contiguous duration chunks

2. Male: results



Overall **C**_{llr} << forensic_eval_01.

No clear difference between conditions.

No improvement > 60 seconds.

E³FS³: Three-fold Validation

- 2. Australian English male: simulated case-specific conditions
 - → E³FS³ performs well on a dataset close to the case

→ Confidence to proceed with the case-specific validation

3. Female: case-specific conditions

3. Australian English **female**: simulated case-specific conditions

3. Female: case-specific conditions

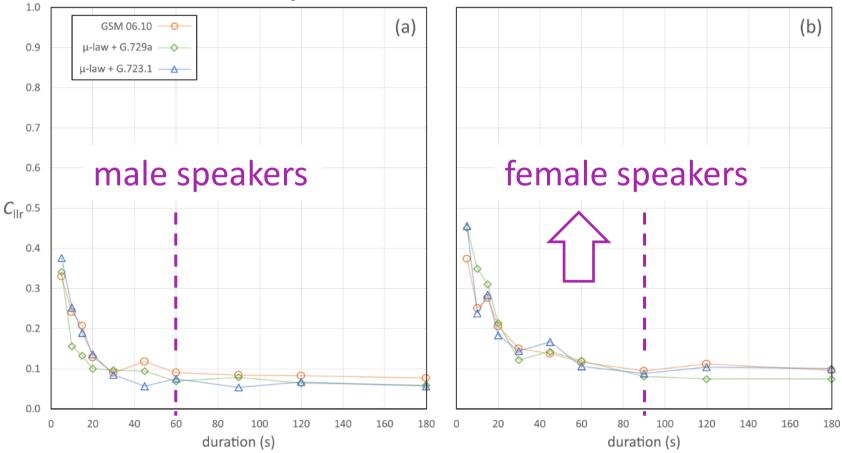
Data (AusEng 500+ database):

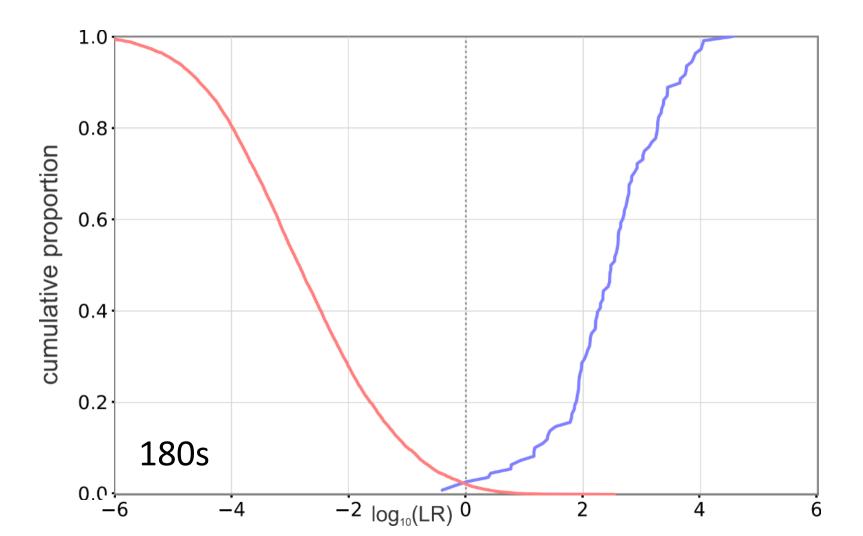
We split the dataset:

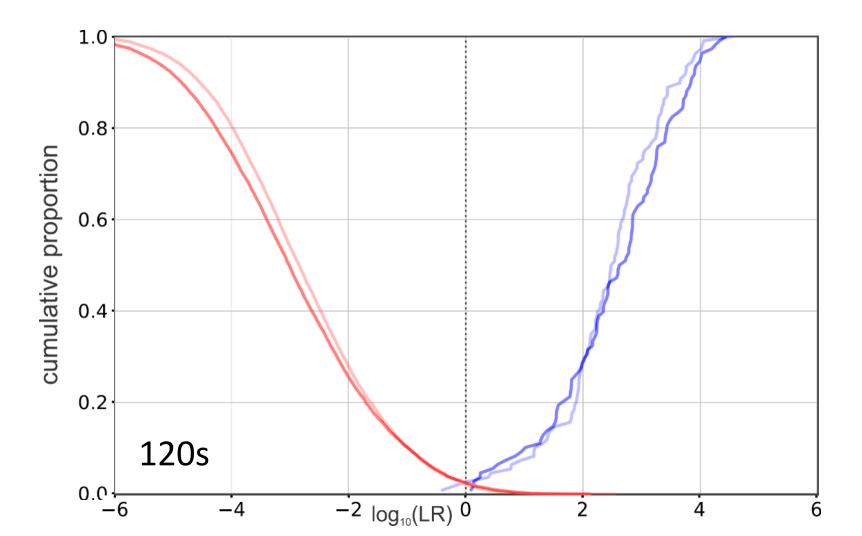
125 speakers for case-specific training data

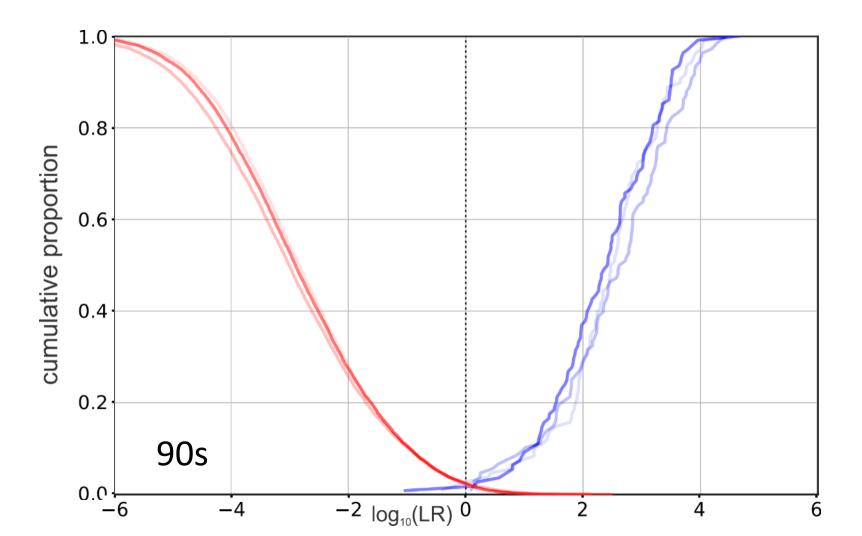
108 speakers for calibration and validation

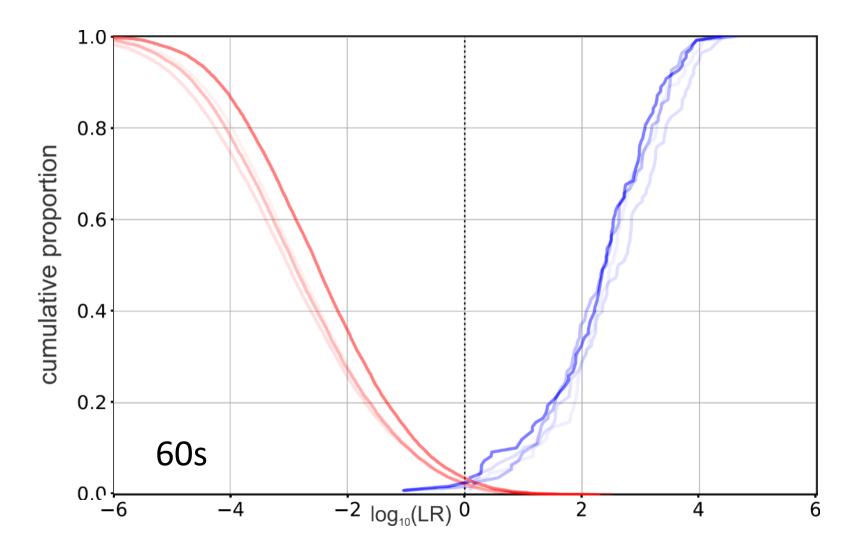
3. Female: case-specific conditions

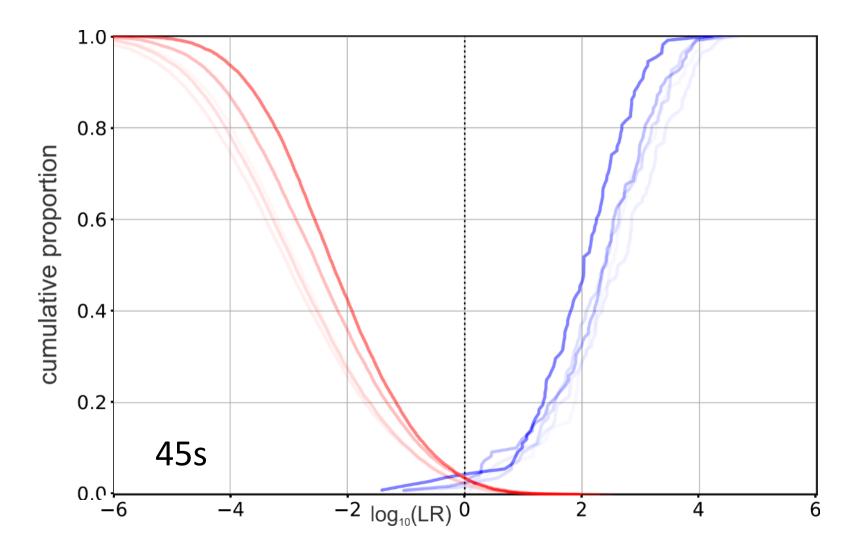


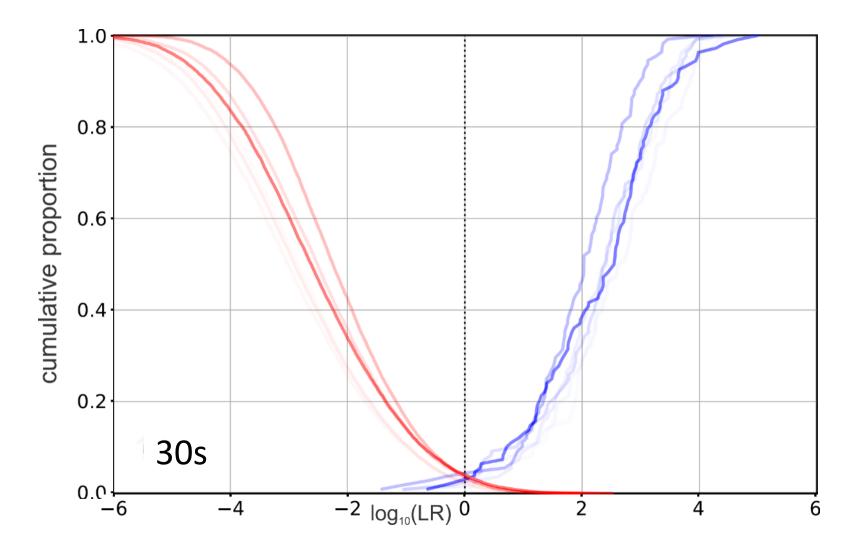


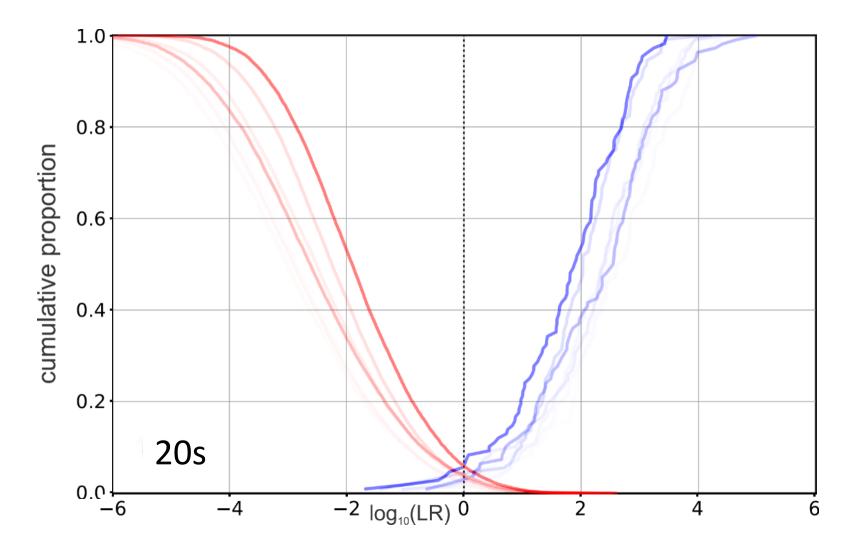


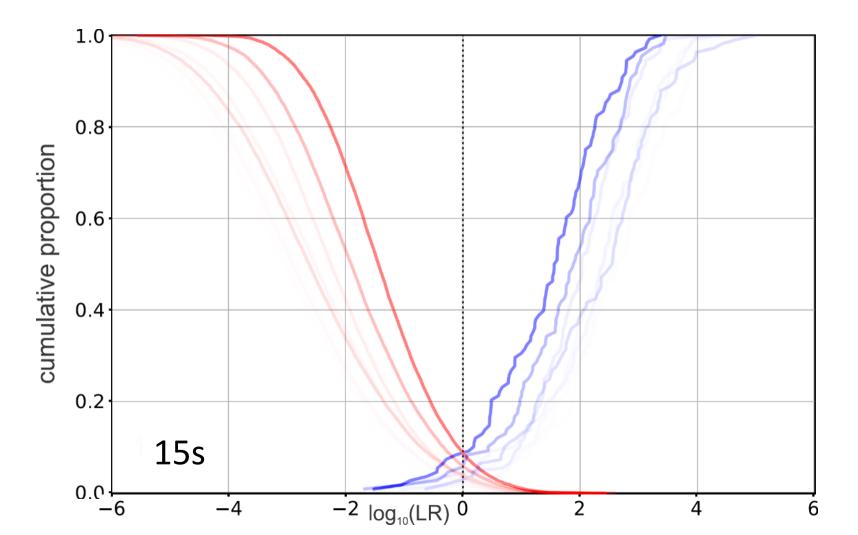


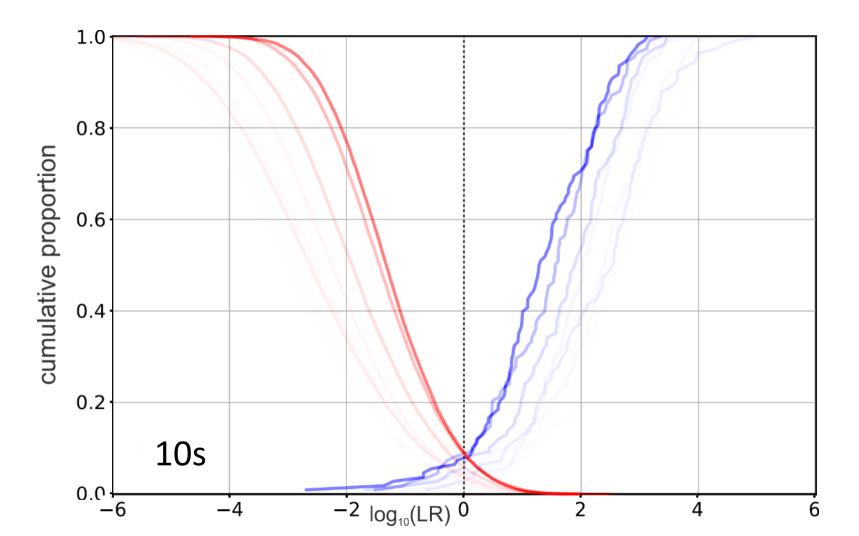


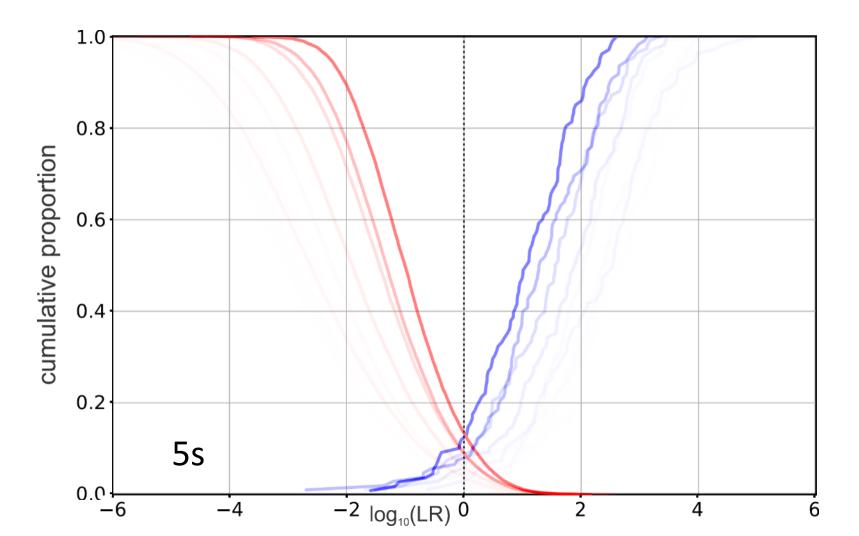












E³FS³: Three-fold Validation

Well-calibrated

Support LRs into the 100s **for this case** (for the shortest durations)

Performance (slightly) worse than for males

3. Australian English female: simulated case-specific conditions

→ Confidence to proceed with the case

So what?

E³FS³: a forensic speech science system.

Based on **state-of-the-art** automatic-speaker-recognition algorithms. Designed for research and casework. Designed to be **open and transparent**.

Supported by relevant data, procedures and training.

Validated:

Leading results on the established benchmark. "Satisfying results" on a recent case.

Weber P., Enzinger E., Labrador B., Lozano-Díez A., Ramos D.,
González-Rodríguez J., Morrison G.S. (2022).
Validation of the alpha version of the E3 Forensic Speech Science System
(E3FS3) core software tools. Forensic Science International: Synergy, 4:100223.

Contact us:

p.weber1@aston.ac.uk | http://forensic-data-science.net/

Read the full paper:

