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Continuously Changing Smooth Trajectories

Speech is not a set of discrete states
— rather a series of smooth, continuous transitions.
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“he will allow a rare lie”
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HMS Linear Dwell-Transition Model
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Holmes, Mattingley, Shearme, ‘Speech Synthesis by Rule’, (1964) (HMS).
@ A sequence of stationary periods linked by smooth transitions.
@ Piece-wise linear approximation.

@ Dwell (articulator) target frequencies, transitions.
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CS-HMM: Recovery of Phoneme Sequences

Given outputs generated according to the HMS Model, fit a continuous
sequence of trajectories to them ...
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@ ... and thus recover the sequence of phonemes.
@ Continuous-State HMM algorithm.
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CS-HMM: Assumptions

Speech is modelled as a sequence of constant dwells and linear transitions.
Dwell represents target sound (e.g. phoneme):

® Persists for ty ~ Dy time steps.
@ Canonical phoneme frequency targets, fg.
@ Actual frequency targets: noisy realisations, f; ~ Ny(fg, A).

@ Realisation variance allows for systematic departures from the mean
(e.g. speaker dependence if that is not modelled separately).

@ Noisy observations, y; ~ Ny(ft, E).

Transition represents smooth movement of articulators between dwells:
@ Persists for t7 ~ Dt time steps.
@ Frequencies transition linearly between realised targets.

@ Noisy observations about the linear transition.
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CS-HMM: Assumptions
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Red: canonical targets, Green: realised targets, Blue: observations.
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CS-HMM: State

Continuous component
@ x: realised target frequencies at time t (dwells and transitions),
@ s: slopes at time t (transitions),

Discrete component

identify whether in dwell or transition,

@ h: time steps in current dwell /transition,
@ identity of current phoneme,
°

Phonetic history.
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CS-HMM: Hypothesis

Probability information about an infinite set of states,
@ Alpha value a;_1(x):

@ sum of probabilities over all paths leading to state at t —1...
@ ... consistent with discrete history. ..
@ ... given path transitions and observations.

@ Parametric form: scaled Gaussian,

at—l(x) = Kt—lNd(x - M, P)7
where  Ny(x,P) = (27)~/2|P|*/2 exp{—1ixPx}.

w1 and P are the mean and precision (1/variance) of the distribution over
the current continuous state.

K; is the sum of probabilities of paths consistent with the hypothesis.

d is the dimension of the space.
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CS-HMM: ‘Training'’

Learn the parameters in the system, e.g.
@ Per-phoneme canonical target frequencies f, (= 40 x 3).
@ Target frequency co-variance matrix A (6).
© Observation co-variance matrix E (6).

@ Timing model (can be anything).
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CS-HMM: Recovery

© Assume dwell start: Initialise one hypothesis per phoneme
ap(x) = Ng(x — £y, A).

@ Step through dwell. Observe y;, assumed drawn from Ny(x, E).
© Update hypothesis to take account of observation

at(x) = Ke—aNg(x — pre—1, Pr-1)Ng(y: — x,E)
= KtNd(X — Mty Pt)

where

Py =Pt 1+ E,
Pt = Pt_l(Pt—l,U«t—l + Ey:),
K: =K1 Nd (Yt - Ht-1, (Pt__11 + E_l)_l)'
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CS-HMM Recovery

Similar (but more complicated) formulae allow us to step through a
transition and to move between dwells and transitions.

@ At each tick during a dwell we have a choice between continuing the
dwell and entering a transition.

@ At each tick during a transition we have a choice between continuing
the transition and entering a dwell for each phoneme in the inventory.

@ Hence we branch on hypotheses at each step.
@ And to keep their number within bounds, we threshold on K.

@ For a full development of the mathematics, see the papers on our
website (www.birmingham.ac.uk/srbs).
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CS-HMM Process lllustration
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Experimentation

Limited experimentation to illustrate the technique.
@ Recover TIMIT phoneme sequences.
@ Vocal Tract Resonances [Deng et al., 2006].

@ Learn and recognise single utterances.
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Recovery of Phoneme Sequences from TIMIT
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Utterance test/dr2/mwew0/sx11: ‘he will allow a rare lie’.

Transcription:  /hhiy wlah | awerreh r|ay/
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Recovery of Phoneme Sequences from TIMIT
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Utterance test/dr2/mwew0/sx11: ‘he will allow a rare lie’.

Transcription:  /hh iy wl ah | aw er r eh r | ay/
Recovery: /hhiy wlahlaw aherrehrlay/
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Recovery of Phoneme Sequences from TIMIT
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Utterance test/dr2/mwew0/sx11: ‘he will allow a rare lie’.

Transcription:  /hh iy wl ah | aw er r eh r | ay/
Recovery: /hhiy wlahlaw aherrehrlay/
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To Conclud

The CS-HMM algorithm is able to successfully recover phoneme sequences
in a controlled environment

@ using a more faithful model of speech,

@ and a very limited parameter set.

Some developments are clear:
@ accurate training of the phoneme inventory,
@ automated parameter learning,
@ handle systematic variation in speech,

@ how does the model extend to non-sonorant speech?
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Thank you.

Questions?

http://www.birmingham.ac.uk/SRbS/
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