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A Problem of Choice
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log files

Enterprise

“A series of actions or steps

towards achieving a particular end.”

“step-by-step activities

to solve a business problem or need.”
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Process Mining — Issues

Representations
Petri nets

Heuristic nets

Activity Graphs

BPMN

. . .

Algorithms
formal / heuristic

natural / neural / genetic

slow / fast

restricted / general

cycles / acyclic

. . .

Issues
Choice! — Non-probabilistic — How much data?
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Probabilistic View of Processes

Representation-free:

1 process = distribution ⇒ to learn.

2 Secondary: represent, analyse, cluster, abstract . . .

underlying model,
activities a, b, . . ..
fixed distribution PM.

workflow log,
traces abdefggh, . . .,
finite sample, i.i.d..

distribution
PM′ ≈ PM

1 common basis for analysis and comparison,

2 consider convergence behaviour of algorithms,

Representation-free, but we do use a representation!
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Probabilistic Deterministic Finite Automata

PDFA A = (QA,Σ, δA, q0, qF ),

Probabilistic: transition probability function

δA : QA × Σ× QA → [0, 1],

Deterministic: single paths,

Finite: finite QA, single q0, qF ,

Represent single probability distribution.
Common denominator.
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Probabilistic: transition probability function

δA : QA × Σ× QA → [0, 1],

Deterministic: single paths,

Finite: finite QA, single q0, qF ,

Represent single probability distribution. p(iabdefgo) = 0.54.
Common denominator.
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Process Structures

(Business) processes can be split into basic building blocks.
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A Framework for Analysis

Example:

1 Probability formulae: p(structure),
2 aggregate,
3 investigate,
4 experimental confirmation:

design and simulate,
mine,
convert to PDFA,
compare distributions.

Next we apply to the
well-known

Alpha Algorithm.
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Application to the Alpha Algorithm

Alpha mines a Petri Net:

activities → transitions,

local relationships → places.

Scan log → basic ‘relations’:

a > b: ‘saw’ ab in log,

a→ b: causal relation,

a#b: no relation,

a ‖ b: parallel.

Partition the set of activities.
Partition the set of logs of n traces.

P. Weber, B. Bordbar, P. Tiňo (Birmingham) Analysis of Process Mining Algorithms 8 Sept 2011 13 / 21



Probability Formulae for Alpha

Notation:
π(ab) = ‘probability of ab occurring in a trace’.
Pα(a→n b) = ‘probability that Alpha infers a→ b from log of n traces.
Example formulae for basic relations:

Pα(a >n b) = 1−
(

1− π(ab)
)

n

Pα(a→n b) =
(

1− π(ba)
)n
−
(

1− π(ab)− π(ba)
)n

But general splits and joins lead to complex formulae. . .
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Probability Formulae for Alpha

But general splits and joins lead to complex formulae. . .
Require:

a→n b1

a→n b2

. . .

b1#nb2

b1#nb3

. . .

NOT independent,

so need probability of ‘seeing’ all pairs ab1, ab2, . . .,

but not b1b2, b1b3, . . ., ‘Inclusion-exclusion principle’.

Simplify: assume independent:
intuitive and exponentially-decreasing error.
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Experimental Evaluation

Very simple model, identified structures:

170 traces for 95% probability of correct discovery.

Use Reachability Graph and Maximum Likelihood probability estimation.

Graphs next.
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Experimental Results

Convergence of Mined Model with Ground Truth.
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Figure 1: Probability of Approximately Correct Model
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Figure 2: Probability of Approximately Correct Model

Initial results show that the amount of data needed for mining can indeed
be successfully predicted.
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To Conclude

Framework for analysis of process mining algorithms
— behaviour — data requirements.

⇒ Probability distributions over strings of symbols.
⇒ Probabilistic discovery of process structures.
⇒ Representation-free.

Initial results:

1 viable at least for Alpha,

2 distance measures more discerning,

3 separates learning behaviour from representation.
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Thank You!

Thank You!

Phil Weber

http://www.cs.bham.ac.uk/˜pxw869/

p.weber@cs.bham.ac.uk
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