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Process Mining

receive
order

Z?;cc: Date CaseID User Task Other Data...
i 20100714 0001 AB Rec orderno
20100714 0001 CD Check ---
Lilind .. 0001 XY Pick
v_*_v - 0002 AB  Rec orderno
0001 MN Billing BACSxxxx

despatch
0002 PQ Check fail

0003 AB Rec orderno
chase

Desp -> Bill 10%
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Process Mining

Original Business Process

receive
order

(Intention)
Dot o, User  Task Other Data...
AB Rec orderno
“A series of actions or steps Check
I: towards achieving a particular end.” NY Pick
AB Rec orderno
“step-by-step activities MN  Billing BACSXxxx
to solve a business problem or need.” PQ Check fail
AB Rec orderno

« ” .
True Busme_ss Process Bill -> Desp 90%

(Reality!)
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Process Mining

User  Task Other Data...
AB Rec orderno
CD Check

Y Pick
0002 AB Rec orderno
0001 MN Billing BACSxxxx
0002 PQ Check fail
0003 AB Rec orderno
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Process Mining — Issues

Representations

@ Petri nets

@ Heuristic nets
o Activity Graphs
o BPMN

9o ...

Algorithms

formal / heuristic

natural / neural / genetic
slow / fast

restricted / general

cycles / acyclic

e © ¢ ¢ ¢ ¢

Issues
Choice! — Non-probabilistic — How much data?
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Probabilistic View of Processes

Representation-free:
@ process = distribution = to learn.

© Secondary: represent, analyse, cluster, abstract ...

7| — Mined distribution

underlying model, workflow log, distribution
activities a, b, . . .. traces abdefggh, ..., Py = Py
fixed distribution Py4. | finite sample, i.i.d..

underlying
model
distribution)

© common basis for analysis and comparison,
© consider convergence behaviour of algorithms,

Representation-free, but we do use a representation!
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Probabilistic Deterministic Finite Automata

PDFA A = (Qa, X, 64, G0, GF ),

@ Probabilistic: transition probability function
(5AZQA><Z>< QA—>[O,1],

@ Deterministic: single paths,
o Finite: finite Qa, single qo, gr,

Represent single probability distribution.
Common denominator.
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Probabilistic Deterministic Finite Automata

PDFA A = (Qa, X, 64, G0, GF ),

@ Probabilistic: transition probability function
(5AZQA><Z>< QA—>[O,1],

@ Deterministic: single paths,
o Finite: finite Qa, single qo, gr,

Represent single probability distribution. p(iabdefgo) = 0.54.
Common denominator.

P. Weber, B. Bordbar, P. Tifio (Birmingham)  Analysis of Process Mining Algorithms 8 Sept 2011



Process Structures

(Business) processes can be split into basic building blocks.

Sequence Exclusive Or (XOR) split

@400

Parallel (AND) split
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A Framework for Analysis

Example:

IC: AND

I
h
D 4 I Split pa | P6 |E: XOR split

@ Probability formulae: p(structure),
© aggregate,

© investigate,

© experimental confirmation:

Next we apply to the
o design and simulate, well-known
o mine, Alpha Algorithm.
@ convert to PDFA,
@ compare distributions.
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Application to the Alpha Algorithm

Alpha mines a Petri Net:

@ activities — transitions,

Despatch

@ local relationships — places.

a:l b:l
Check Pick

Scan log — basic ‘relations’:

@ a > b: ‘saw’ ab in log,
& Q = all logs of n traces

@ a — b: causal relation,

@ a#b: no relation,

® a || b: parallel.

Partition the set of activities.
Partition the set of logs of n traces.
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Probability Formulae for Alpha

Notation:
m(ab) = 'probability of ab occurring in a trace’.

P.(a —, b) = ‘probability that Alpha infers a — b from log of n traces.
Example formulae for basic relations:

P.(a >, b) =

But general splits and joins lead to complex formulae. ..
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Probability Formulae for Alpha

Notation:
m(ab) = 'probability of ab occurring in a trace’.

P.(a —, b) = ‘probability that Alpha infers a — b from log of n traces.
Example formulae for basic relations:

Py(a>p b)=1— (1 —m(ab))"

Po(a —n b) =(1 — 7(ba))" — (1 — w(ab) — 7(ba))"
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Probability Formulae for Alpha

But general splits and joins lead to complex formulae. ..
Require:

d —np bl

a —p b2

b1#nb2

b1#nbs3

@ NOT independent,
@ so need probability of ‘seeing’ all pairs aby, ab,, ...,
@ but not by by, by bs, . .., ‘Inclusion-exclusion principle’.

Simplify: assume independent:
intuitive and exponentially-decreasing error.
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Experimental Evaluation

Very simple model, identified structures:

B:XOR join/split ..~

( ) é I s )
- '?

~ | ’ :,»'

A:XOR split A:XOR split C:XOR join

170 traces for 95% probability of correct discovery.
Use Reachability Graph and Maximum Likelihood probability estimation.
Graphs next.
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Experimental Results

Convergence of Mined Model with Ground Truth.
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Figure 1: Probability of Approximately Correct Model Figure 2: Probability of Approximately Correct Model

Initial results show that the amount of data needed for mining can indeed
be successfully predicted.
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To Conclud

Framework for analysis of process mining algorithms
— behaviour — data requirements.

= Probability distributions over strings of symbols.
= Probabilistic discovery of process structures.
= Representation-free.

Initial results:
© viable at least for Alpha,

© distance measures more discerning,

© separates learning behaviour from representation.
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Thank You!

Thank You!

Phil Weber

http://www.cs.bham.ac.uk/~pxw869/
p.weber@cs.bham.ac.uk
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