

Forensic Voice Comparison

(Automatic Speaker Recognition)

Phil Weber – BrumAI – 12 Aug 2021

Forensic voice comparison

1. The technology- how

2. Specific concerns in forensics – trust

3. Discussions in the context of AI – bias and humans

Dr. Phil Weber

Aston University

Forensic Data Science Laboratory Forensic Speech Science Laboratory

Aston Institute for Forensic Linguistics

Think Beyond Data

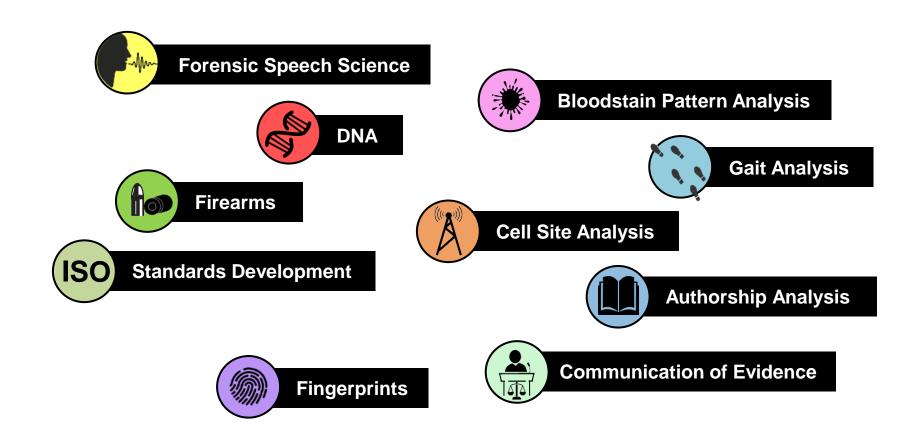
 free consultancy in AI & data analytics for SMEs in the UK West Midlands

Aston Forensic Data | Speech Science Laboratory

- New paradigm for the evaluation of forensic evidence
 - quantification of strength of evidence (likelihood ratio)
 - relevant data, quantitative measurement, and statistical models
 - validation under conditions reflecting those of the case under investigation
 - reduction of the potential for cognitive bias.

Forensic data science

https://www.aston.ac.uk/research/forensic-linguistics/data-science-laboratory https://www.aston.ac.uk/research/forensic-linguistics/forensic-speech-science-laboratory



Context

To think about ...

- 1. What would you prefer in court?
 - human expert or AI comparison of (your?) voice recordings?

If AI then what would you want from the AI?
 If human then what would you want from the human?

To think about ...

Why is it hard?

1. Between-speaker and within-speaker variability

- 2. Variable-length recordings
- 3. Mismatch in recording conditions

What is the problem?

Automatic speaker recognition:

Classification

Speaker identification – is it speaker A or speaker B?

Speaker verification – are you speaker A?

What is the problem?

Forensic voice comparison:

Courts make decisions, not forensic scientists

 $Pr(Hypothesis \mid data) \in [0, 1]$

VS

 $f(data | Hypothesis) \in [0, \infty)$

What is the problem?

Forensic voice comparison:

Weight of the evidence

 Compare two mutually-exclusive hypotheses using a likelihood ratio

Weight of the evidence

Forensic voice comparison:

Mutually-exclusive hypotheses – specific-source

- The observed properties of the voice on the questioned-speaker recording are more likely if it was produced by the known speaker.
- The observed properties of the voice on the questioned-speaker recording are more likely if it was produced by some other speaker selected at random from the relevant population.

Weight of the evidence

Forensic voice comparison:

Mutually-exclusive hypotheses – same-source

- The observed properties of the voice on the questioned- and known-speaker recordings are more likely if they were produced by the same speaker (selected at random from the relevant population).
- The observed properties of the voice on the questioned- and known-speaker recordings are more likely if they was produced by different speakers selected at random from the relevant population.

Likelihood ratio

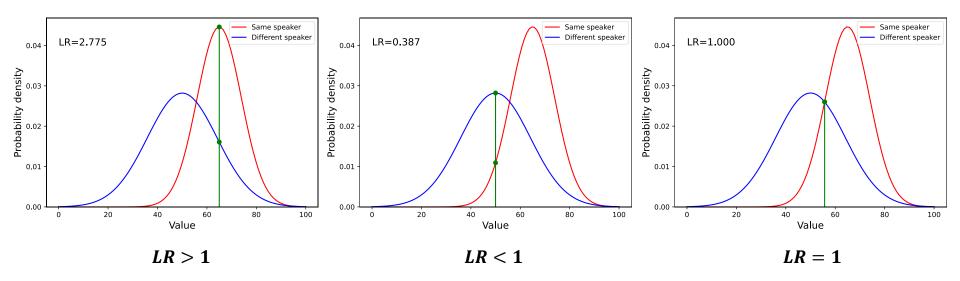
- Likelihood ratio (LR)
 - likelihood of data given competing hypotheses

f (data | same [random] speaker)f (data | different [random] speaker)

Classifier

Pr(known speaker | data) vs Pr(different speaker | data)

Likelihood ratio



Evidence points to same-speaker

Evidence points to different-speaker

No conclusive evidence

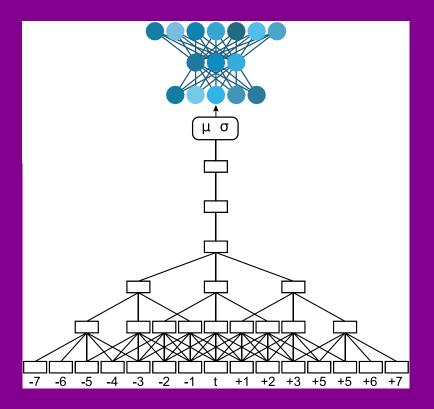
Similarity and typicality are both important

The technology

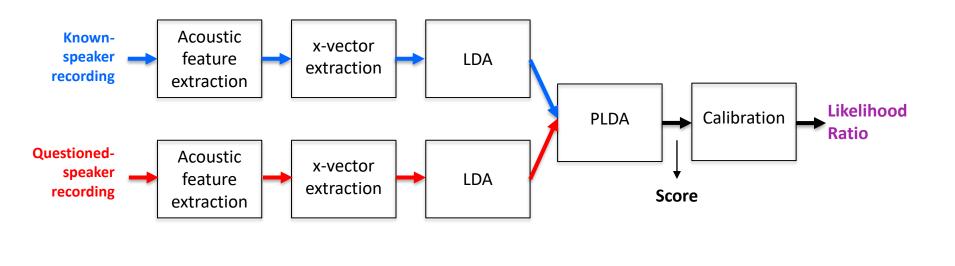
For automatic speaker recognition

and

Forensic Voice Comparison

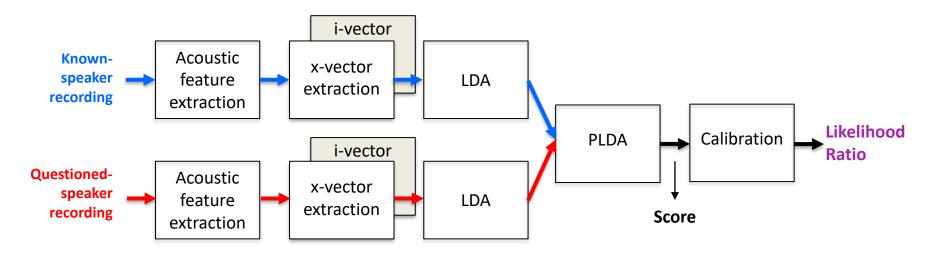


Machine learning pipeline (x-vector)



Front-end modelling (high-level feature extraction) **Back-end modelling**

Machine learning pipeline (i-vector)



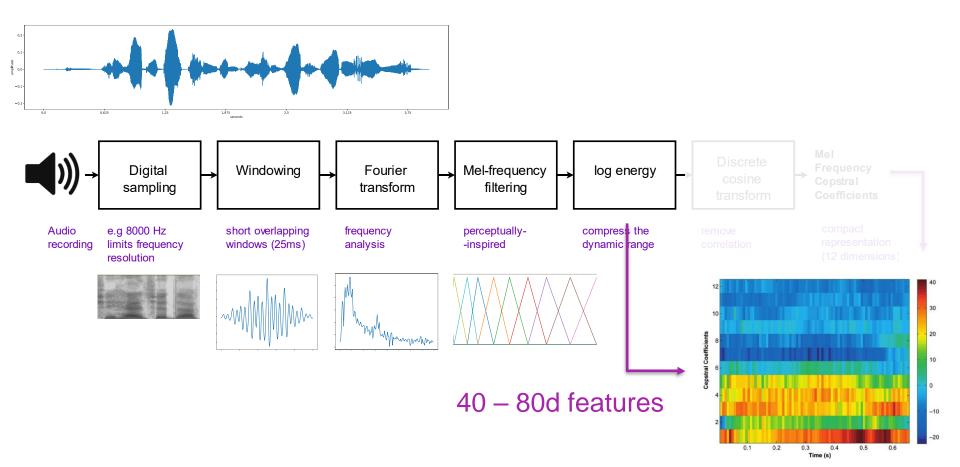
Front-end modelling (high-level feature extraction) **Back-end modelling**

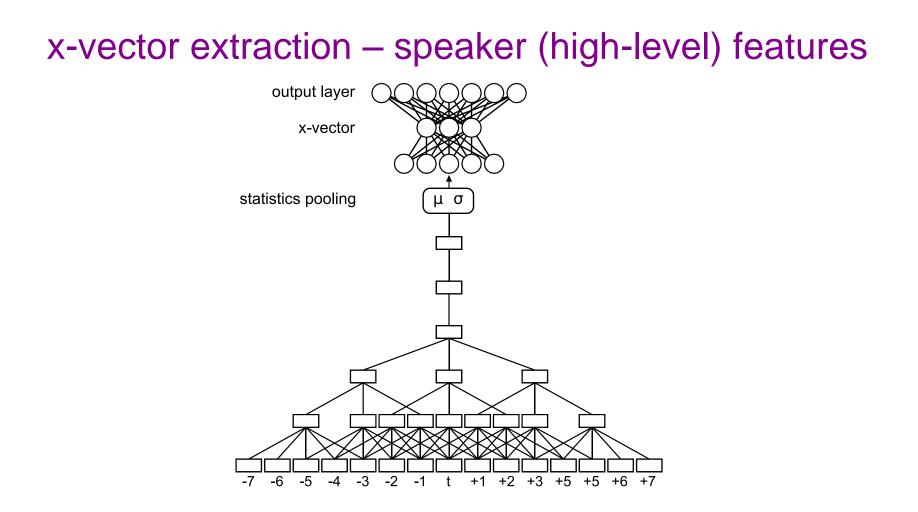
Machine learning pipeline (x-vector)

Key: everything we do

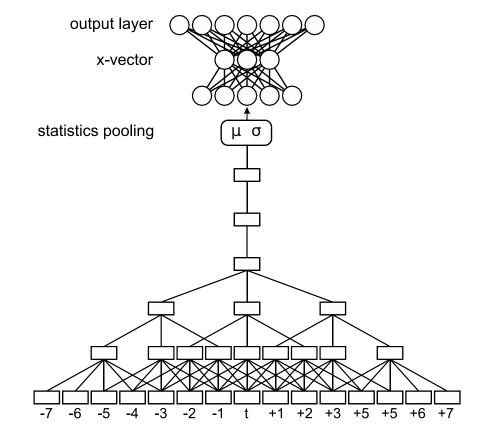
- 1. Enhance (make use of) between-speaker differences
- 2. Downplay (ignore) within-speaker differences
- 3. Remove effects of recording condition

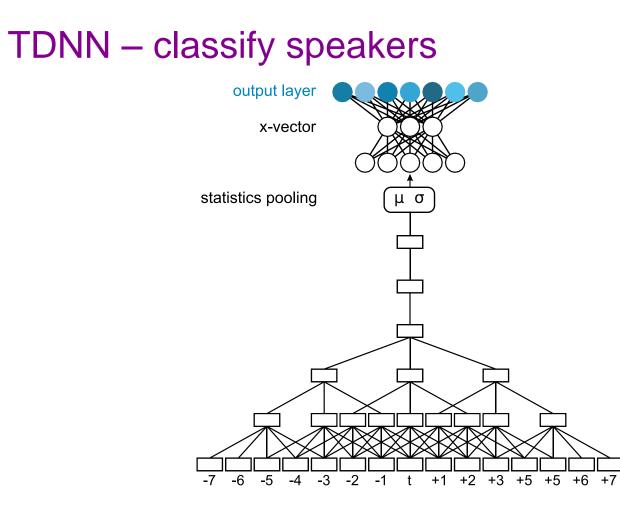
Acoustic feature extraction (low-level features)



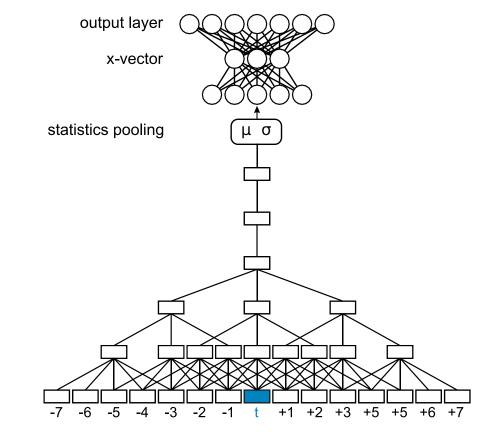


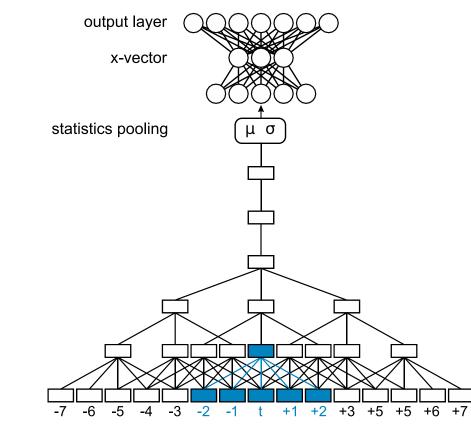
TDNN – Time-delay deep neural network

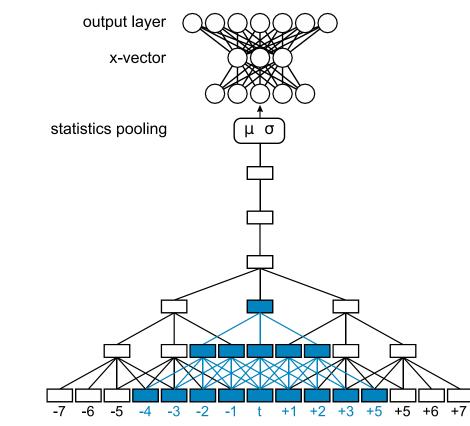


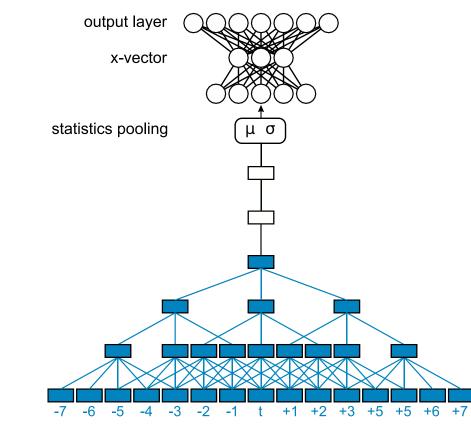


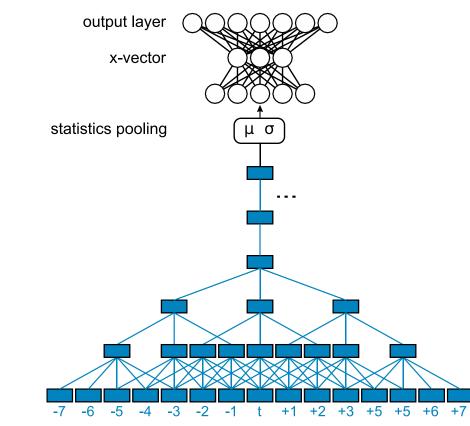
TDNN – input MFCC

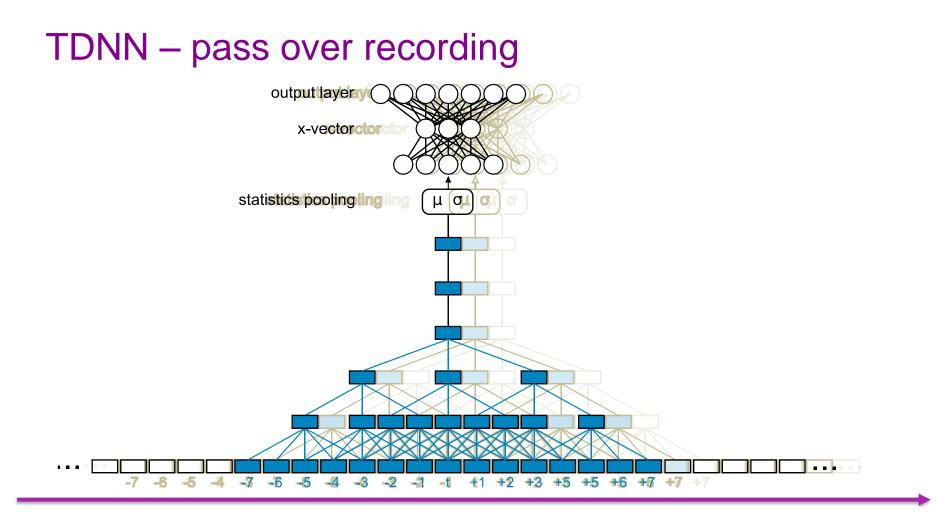


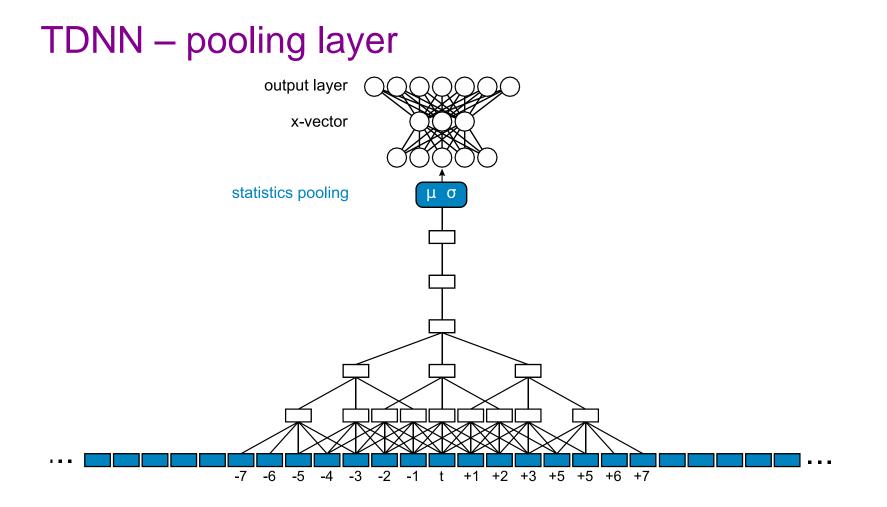


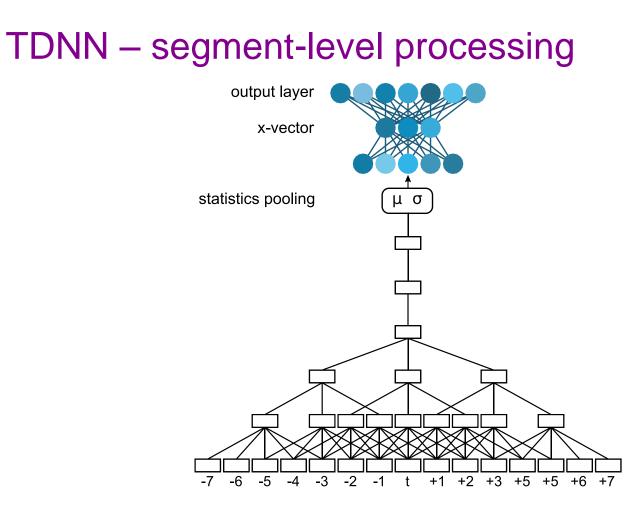


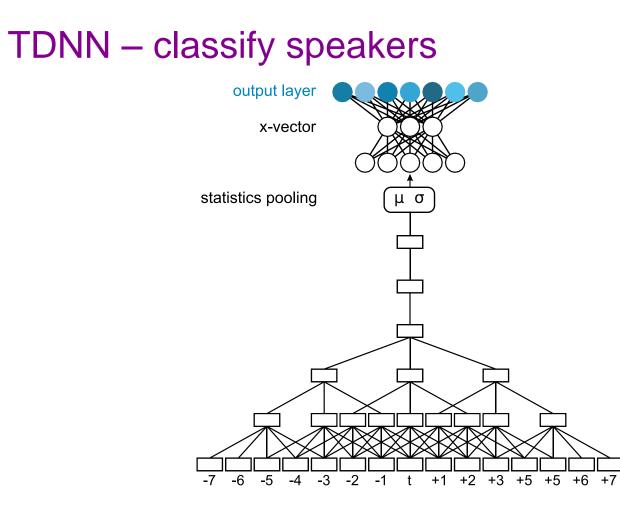




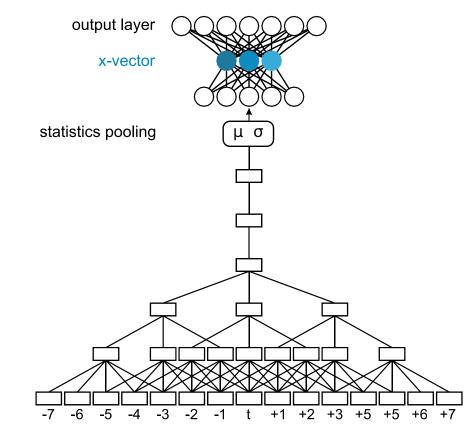






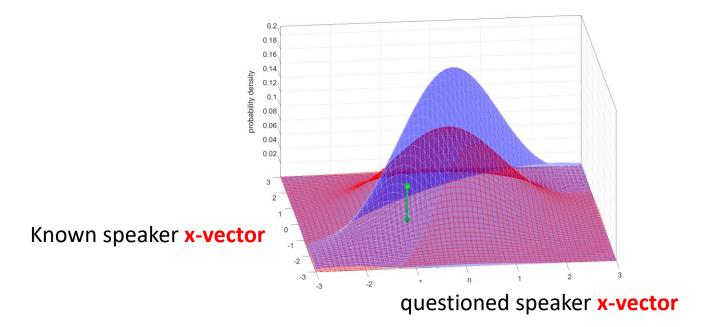


TDNN – x-vector bottleneck



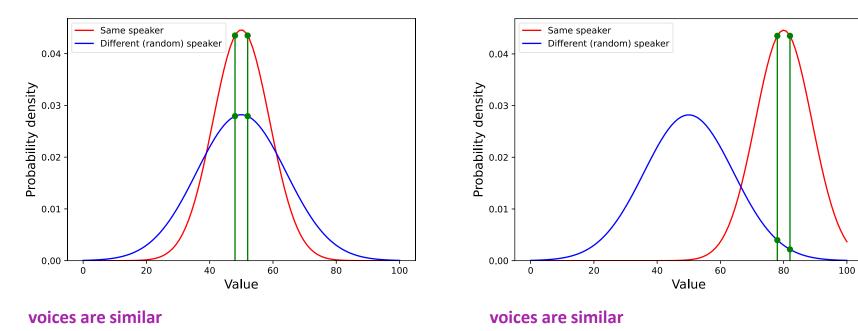
Probabilistic linear discriminant analysis (PLDA)

Attempt to calculate a likelihood ratio



Morrison, G. S.; Enzinger, E.; Ramos, D.; González-Rodríguez, J. & Lozano-Díez, A. Banks, D. L.; Kafadar, K.; Kaye, D. H. & Tackett, M. (*Eds.*) Statistical models in forensic voice comparison, 20, *Boca Raton, FL: CRC,* **2020**, 451-497, http://handbook-of-forensic-statistics.forensic-voice-comparison.net/

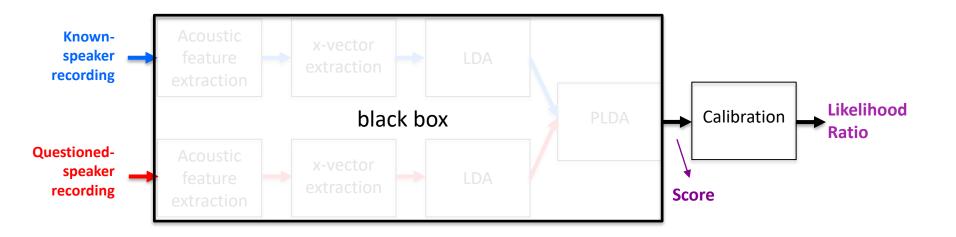
PLDA – Similarity and typicality



but very common

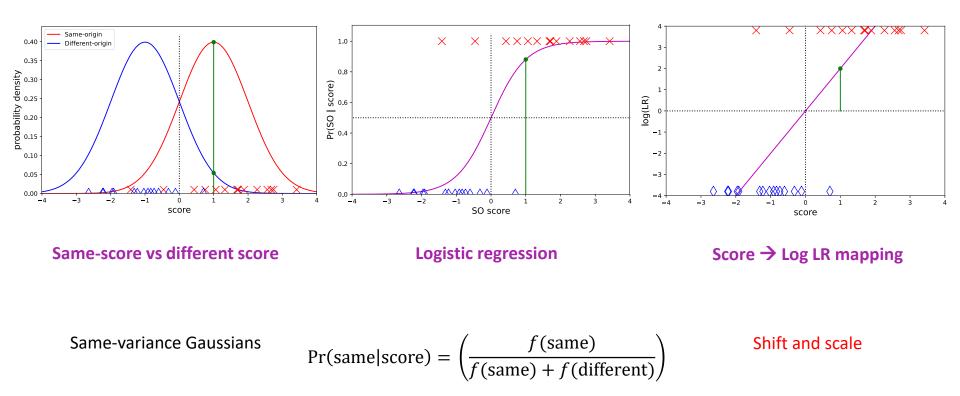
but very atypical

System calibration



Front-end modelling (high-level feature extraction) **Back-end modelling**

System calibration



Specific concerns in forensics

Trust

Image source StockMonkeys.com [http://www.stockmonkeys.com]

Forensic voice comparison

Critical

- Court must be able to trust the output.
- The likelihood ratio must mean what it says.

Implications for data and processes

Historically ... subjectivity

- Historical issues spectrogram reading, voiceprint, auditory-phonetic, acoustic-phonetic,
 ...
- Pseudoscience bitemarks
- Over-reliance on "experts", training, procedures, faulty statistics
- "Identification" vs strength of evidence (CSI et al.)
- Confusion of the role of the expert and of the court
- Faulty processes introducing cognitive bias

Forensic voice comparison ... objectivity

- Critical
 - 1. Use of data
 - 2. Calibration
 - 3. Avoidance of cognitive bias
 - 4. Validation of the system under the conditions of the case

Critical - 1. use of data

- Must use relevant data
 - estimating the different-speaker (defence) hypothesis
 - to estimate typicality
- Must train (and/or adapt) with relevant data
 - Relevant population
 - Relevant recording conditions
 - Subjective decisions
 - Collect or simulate data

Critical – 2. calibration

• You might calibrate someone's prediction (weather, football, lottery, ...)

• Treat the whole system as a black box

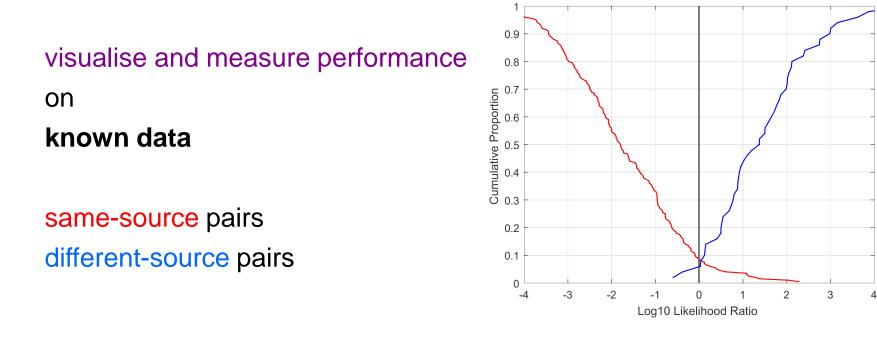
• Train a parsimonious model (few parameters)

• Known same-source, different-source pairs population and conditions reflect the case

Critical – 3. avoidance of cognitive bias

- report the strength of evidence : likelihood ratio
- move the human as early in the pipeline as possible
- separation of duties
- careful pipeline for processing case data

Critical – 4. black-box validation



$$C_{llr} = \frac{1}{2} \left(\frac{1}{N_{so}} \sum_{i=1}^{N_{so}} \log_2 \left(1 + \frac{1}{LR_{so_i}} \right) + \frac{1}{N_{do}} \sum_{j=1}^{N_{do}} \log_2 \left(1 + LR_{do_j} \right) \right)$$

Discussions in the context of AI

Bias and humans

Bias in Al

- There's no intelligence here (?)
- All the intelligence in the system comes from the human
 - data (population) selection
 - training
 - Interpretation
- But society has valid concerns about bias in AI systems
- (and interpretability)

Bias in Al

- There's no intelligence here (?)
- All the problems in the system come from the human
 - data (population) selection
 - training
 - Interpretation
- But society has valid concerns about bias in AI systems
- (and interpretability)

Bias

Interpretability

"If you can't explain it simply, you don't understand it well enough."

Albert Einstein

"You can't depend on an AI system you don't understand."

https://www.interpretable.ai/

Data?

Validation?

Calibration?

Keys?

Data?

• ...

- Who selects it?
- When is it selected?
- Is it appropriate?
- How much is needed?

Validation?

Calibration?

Keys?

Data?

Validation?

- Demonstrate performance to engender trust
- Is it always possible?
- Does interpretability then matter?

Calibration?

Keys?

Data?

. . .

Validation?

Calibration?

- We could calibrate the human!
- Is it always possible?
- Can it correct for bias?
- Does interpretability then matter?

Data?

• ...

Validation?

Calibration?

- How to use the system garbage in = garbage out
- How to interpret the results
- · How to avoid (cognitive) bias

Data?

Validation?

Calibration?

Training and process?

These are all human factors in our (development of, use of) AI

The end

Phil Weber – p.weber1@aston.ac.uk

Research Fellow – Aston University

Forensic Speech Science Laboratory (FSSL) Forensic Data Science Laboratory (FDSL) Aston Institute for Forensic Linguistics (AIFL) Computer Science